III-V and Group IV Epitaxy for Low Energy Optoelectronics

Christopher Heidelberger1, Seth Fortuna2, Ming Wu2, Eugene A. Fitzgerald1

1Department of Materials Science and Engineering, Massachusetts Institute of Technology

2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

April 13, 2017
Novel III-V epitaxy: enabling a path towards low-energy optoelectronics

Antenna-enhanced LED

Photodetector

Si Photonic Waveguide

(1)
- InGaAs/InGaAsP MQW structure
- Heavy p-type doping in active device region

(2)
- III-V monolithic integration with Si could enable photodetector or high-transimpedance transistor for amplification of signal

Top figure from M. Wu, E3S Retreat, August 2015
Electrically-injected III-V antenna-enhanced nanoLED

Advantages:
• high speed
• no threshold current
• directional light emission
• thermal heat-sink
• electrical contact

From Fortuna, et al., E3S Seminar, December 8, 2016
Active region p-doping analysis from UC Berkeley

Assumptions:
(1) Surface recombination velocity = 3e4 cm/s
(2) Auger recombination coefficient = 2e-29 cm^-6s^-1
(3) Sp. Em. Enhancement = 640, Antenna Efficiency = 45%
Q-factor = 37
(4) Bulk SRH ignored
(5) Injection carrier density = 1.5e18cm^-3
InGaAs/InGaAsP LED epitaxial structure

- p+ active layer modeled to increase device speed while maintaining efficiency
- InGaAs/InGaAsP MQW structure grown via MOCVD
 - composition calibrated via XRD
 - doping measured via Hall effect
 - InGaAsP E_g measured via PL

LED structure schematic:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Control (Experimental)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InGaAs top contact</td>
<td>n++ (1 x 10^{19} cm^{-3})</td>
</tr>
<tr>
<td>InP top contact</td>
<td>n++ (1 x 10^{19} cm^{-3})</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td>undoped</td>
</tr>
<tr>
<td>InGaAs QW</td>
<td>p+ active region:</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td></td>
</tr>
<tr>
<td>InGaAs QW</td>
<td></td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td></td>
</tr>
<tr>
<td>InGaAs QW</td>
<td></td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td></td>
</tr>
<tr>
<td>InP bottom contact</td>
<td></td>
</tr>
<tr>
<td>InP (substrate)</td>
<td></td>
</tr>
</tbody>
</table>
Metalorganic chemical vapor deposition (MOCVD)

- Thomas Swan/Aixtron close-coupled showerhead reactor (c. 2005)
- hydride precursors for group IV and V
- unique group IV growth capability
 - removable quartz chamber liner
 - third mixing rail for group IV precursors
Growth of undoped LED structure

LED structure schematic:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP top contact</td>
<td>30 nm</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td>40 nm</td>
</tr>
<tr>
<td>InGaAs QW</td>
<td>6 nm</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td>10 nm</td>
</tr>
<tr>
<td>InGaAs QW</td>
<td>6 nm</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td>10 nm</td>
</tr>
<tr>
<td>InGaAs QW</td>
<td>6 nm</td>
</tr>
<tr>
<td>InGaAsP barrier</td>
<td>60 nm</td>
</tr>
<tr>
<td>InP bottom contact</td>
<td>300 nm</td>
</tr>
<tr>
<td>InP (substrate)</td>
<td></td>
</tr>
</tbody>
</table>

XTEM

HT = 200 kV, (110) on pole
Luminescence of undoped LED structure

PL of blanket film

Quantum efficiency (large-area LEDs, UC Berkeley)

- >10X increase in quantum efficiency
- 1550 nm target

Normalized quantum efficiency vs. current density (A/cm²)
Options for p-doping of active region

C:
- high max incorporation
- low diffusivity
- specific growth conditions required
- complex calibration

Zn:
- incorporates at standard growth temperatures
- simple calibration
- limited max incorporation
- high diffusivity
LED structure with Zn p-type doping

undoped active region: (Zn doping ~ 5 x 10^{18}):

- InGaAs contact
- InP contact
- InGaAs/InGaAsP MQW
- InP contact

p+ active region:

- InGaAs/InGaAsP MQW

poor EL and IV characteristics for fabricated LED

PL of Blanket Films

DIC Image

For Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.
Diffusivity of Zn in III-As semiconductors

Zn diffused in from surface: complete intermixing of SL structure

J-V degradation of sequentially-grown GaAs PV cells attributed to Zn diffusion

C doping of InGaAs via MOCVD

- C precursor, CBrCl$_3$, interacts strongly with both group III and group V species

- Mechanism governing incorporation
 - C and As fight for group V sites
 - AsH$_3$ overpressure necessary to prevent formation of Ga droplets

- Parasitic reactions
 - $2\text{CBrCl}_3 \rightarrow 2\text{C} + \text{Br}_2 + 3\text{Cl}_2$
 - $3\text{Br}_2 + 3\text{H}_2 + 2\text{Ga(CH}_3)_3 \rightarrow 2\text{GaBr}_3 + 6\text{CH}_4$
 - $3\text{Cl}_2 + 3\text{H}_2 + 2\text{Ga(CH}_3)_3 \rightarrow 2\text{GaCl}_3 + 6\text{CH}_4$

example of parasitic reaction in C-doped GaAsP:

Active C doping in InGaAs

Strain plays effect in C incorporation

Post-growth anneal in N2 ambient reduce H passivation of C dopants

Growth of heavy C-doped InGaAs structures

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• obtain C concentration in target range</td>
<td>• grow at low growth temperature, V/III ratio</td>
</tr>
<tr>
<td>• ensure high dopant activation</td>
<td>• post growth anneal in N(_2) to activate dopants (removal of H)</td>
</tr>
<tr>
<td>• maintain In/Ga compositional control and growth rate control</td>
<td>• use XRD data to feed back into precursor flow rates for next run</td>
</tr>
<tr>
<td></td>
<td>• use in-situ reflectometry to measure growth rate and ensure adequate layer thickness for characterization</td>
</tr>
</tbody>
</table>
Initial C-doped InGaAs calibration

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>Description</th>
<th>Growth Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP cladding, UID</td>
<td>10 nm</td>
<td></td>
<td>550 C</td>
</tr>
<tr>
<td>InGaAs, C-doped</td>
<td>100 nm</td>
<td></td>
<td>500 C V/III ratio = 3 CBrCl(_3) ratio = 19%</td>
</tr>
<tr>
<td>InP regrowth, UID</td>
<td>20 nm</td>
<td></td>
<td>600 C</td>
</tr>
<tr>
<td>InP substrate (S-I)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Growth temperature

\[
p = 4.5 \times 10^{18} \text{ cm}^3
\]

\[(224)\] XRD Reciprocal Space Map

InP substrate

InGaAs

fully strained

fully relaxed

In fraction = 38%
PL of initial mismatched C-doped InGaAs

In$_{0.38}$GaAs, 4.5×10^{18} cm$^{-3}$

Time-resolved (UC Berkeley)

In$_{0.53}$GaAs UID

$\tau \sim 10$ns

Laser power = 500uW
Wavelength = 1000nm
20X objective

In$_{0.38}$GaAs; 4.5×10^{18} cm$^{-3}$

$\tau \sim 30$ps

(224) XRD Reciprocal Space Map

InGaAs

InP substrate

Fully strained

Fully relaxed
Lattice matched growth

InP substrate (S-I)

InP cladding, UID
10 nm

InGaAs, C-doped
200 nm

InP regrowth, UID
20 nm

InP substrate (S-I)

Growth temperature
- 550 C
- 500 C
- 600 C

V/III ratio = 4
CBrCl₃ ratio = 9%

\[\text{In fraction} = 52.2\% \]

\[p = 3.2 \times 10^{18} \text{ cm}^3 \]
Effect of post-growth N_2 anneal on active C doping

RTA anneal:
• 500 C
• time varying from 5 to 15 minutes
• N_2 ambient, 1 atm

\[p = p_0 \{1 - A \exp(-\kappa t)\} \]

Post-growth N$_2$ anneal: effect on PL intensity and lifetime

Decrease in intensity/lifetime after post-growth anneal \rightarrow increased Auger recombination due to higher hole concentration.

Time-resolved (UC Berkeley)

Laser power = 500uW
Wavelength = 1000nm
20X objective

without anneal $\tau \approx 700$ps
with anneal $\tau \approx 140$ps

without anneal, 3.2×10^{18} cm$^{-2}$
with anneal, 1×10^{19} cm$^{-3}$
InGaAs LED structures: conclusions

- Demonstrated undoped InGaAs/InGaAsP LED structure with good morphology and high quantum efficiency
- Grew C-doped InGaAs with $p > 1 \times 10^{19}$ cm$^{-3}$ and recombination limited by Auger recombination
- Future work
 - Grow InGaAsP cladding layers at similar growth conditions as C-doped InGaAs
 - Grow and characterize InGaAs/InGaAsP LED structure with high p-type doping
 - Fabricate and test antenna-enhanced LED structure with heavily-doped active region (UC Berkeley)
III-V on Si epitaxy: challenges

1. lattice mismatch
2. crystal symmetry

- diamond cubic
- zinc blende
III-V active materials

- GaAs/AlGaAs or GaAs/InGaP
- GaAs\(_x\)P\(_{1-x}\)/In\(_y\)Ga\(_{1-y}\)P
 - higher \(E_g\) than GaAs
 - closer lattice constant to Si
 - reduced CTE mismatch with Si
Device test-bed: GaAsP/InGaP HBT

heterojunction bipolar transistor (HBT):

- high frequency
- high power efficiency
Goals:

- Measure GaAsP/InGaP HBT behavior
 - DC current gain
 - transconductance
 - breakdown voltage

- Understand behavior as function of
 - composition/lattice constant
 - defect type and density
 - threading dislocations vs misfit dislocations vs other...
 - effect of substrate and strain relaxation scheme
GaAsP/InGaP HBTs on GaAs substrates
HBT fabrication

1. structure growth (MOCVD) + characterization
Heavy p-type doping of GaAsP

- C is preferred dopant for heavy p-type GaAs
 - lower diffusivity than Zn
- C precursor: CBrCl₃
 - reduces growth rate due to reaction with Ga or precursors
 - alters GaAsP composition

\[
\frac{1 - x}{x} = C \frac{P_{PH_3}}{P_{AsH_3}}
\]
EBIC Measurements of GaAsP Diodes and HBTs
EBIC images of HBTs on GaAs substrates

GaAs/InGaP

GaAs$_{0.825}$P/InGaP

TDD < 1 x 10^4 cm$^{-2}$

TDD = 1.5 x 10^5 cm$^{-2}$
HBT fabrication

1. **structure growth (MOCVD) + characterization**
2. **emitter mesa etch**
3. **base/collector mesa etch**
4. **sidewall passivation (Al_2O_3)**
5. **contact metal deposition**

<table>
<thead>
<tr>
<th>GaAsP subcollector (n+)</th>
<th>GaAsP collector (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAsP collector (n)</td>
<td>GaAsP contact (n++)</td>
</tr>
<tr>
<td>InGaP emitter (n+)</td>
<td>InGaP emitter (n+)</td>
</tr>
<tr>
<td>GaAsP base (p+)</td>
<td>GaAsP base (p+)</td>
</tr>
<tr>
<td>Collector contact</td>
<td>Collector contact</td>
</tr>
<tr>
<td>GaAsP collector (n)</td>
<td>GaAsP collector (n)</td>
</tr>
<tr>
<td>GaAsP contact (n++)</td>
<td>GaAsP contact (n++)</td>
</tr>
<tr>
<td>GaAsP subcollector (n+)</td>
<td></td>
</tr>
<tr>
<td>ΔGaAsP graded buffer (n+)</td>
<td></td>
</tr>
<tr>
<td>GaAs substrate (n+)</td>
<td></td>
</tr>
</tbody>
</table>

For Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.
GaAsP/InGaP HBTs IV characteristics

- sidewall passivation reduced \(I_B \) at low voltages
- \(\beta > 100 \) for all devices
- \(\beta \) not largely dependent on composition

Gummel Plots, 60 µm dia.

\[
\begin{align*}
I_C &: \text{GaAs} \\
I_B &: \text{GaAs} \\
I_C &: \text{GaAs}_{0.94}^P \\
I_B &: \text{GaAs}_{0.94}^P \\
I_C &: \text{GaAs}_{0.88}^P \\
I_B &: \text{GaAs}_{0.88}^P \\
I_C &: \text{GaAs}_{0.82}^P \\
I_B &: \text{GaAs}_{0.82}^P
\end{align*}
\]
Modeling collector current as thermionic emission

Collector Currents, 60 µm dia.

\[I_C = A_E A^* T^2 \exp \left(-\frac{E_A}{kT}\right) \]

- significant underestimation of \(I_C \) for all GaAsP compositions
- \(\Delta E_C \) is much smaller than we thought
Modeling collector current as diffusion across base

Collector Currents, 60 µm dia.

\[I_C = A_E \frac{qD_{n,B}}{X_B} \frac{n_{i,B}^2}{N_B} \exp \left(\frac{qV_{BE}}{kT} \right) \]
Modeling collector current as diffusion across base

- GaAs device predicted within error
- GaAsP devices all have ~10x higher current than expected \(\rightarrow\) better transconductance
- under further investigation

Collector Current at \(V_{BE} = 0.9\) V

![Graph showing collector current at \(V_{BE} = 0.9\) V for different GaAs\(_x\)P\(_{1-x}\) compositions]
GaAsP/InGaP HBTs on Si substrates
SiGe graded buffer growth

GaAsP device layers

ΔSiGe graded buffer (n+)

Si substrate (n+)

MOCVD

CMP

batch process UHVCVD

\[\text{GaAs}_{0.82}\text{P}_{0.18} \rightarrow \text{Si}_{0.18}\text{Ge}_{0.82} - \text{End of grading} \]

\[\text{Si}_{0.5}\text{Ge}_{0.5} \text{ Regrowth} \]

\[\text{Si}_{0.5}\text{Ge}_{0.5} \text{ CMP} \]

Si Homoepitaxy
GaAsP on Si threading dislocation density

PV-TEM of GaAsP/Si structure

• process control is critical!

• final TDD = (3.7 ± 0.7) x 10^6 cm^-2

• TDD shouldn’t affect HBT performance until ~2 x 10^7 cm^2

200 kV, g = (220)
GaAsP/InGaP HBT on Si: DC characteristics

- low $\beta \sim 10$
- $n = 2$ for $I_B \rightarrow$ SCR recombination at E-B interface
Misfit dislocations at E-B interface

EBIC: GaAsP HBT on Si

XTEM: GaAsP HBT Structure

TDD = 2.7×10^6 cm$^{-2}$
Misfit Density = 8.3×10^2 cm$^{-1}$

$200 \, kV$, $g = (220)$

InGaP emitter
GaAsP base
GaAsP collector
misfit dislocation

50 μm
200 nm
Effect of misfit dislocations on β

<table>
<thead>
<tr>
<th>Substrate</th>
<th>TDD (cm$^{-2}$)</th>
<th>Misfit Density (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs (slow grade)</td>
<td>1.5×10^5</td>
<td>< 10</td>
</tr>
<tr>
<td>GaAs (fast grade)</td>
<td>2.6×10^6</td>
<td>1.2×10^2</td>
</tr>
<tr>
<td>Si</td>
<td>2.7×10^6</td>
<td>8.3×10^2</td>
</tr>
</tbody>
</table>

GaAs$_{0.82}$P HBT Current Gain

For Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information.
GaAsP/InGaP HBTs on Si substrates: conclusions

- GaAsP/InGaP HBTs demonstrate high β
- similar I_B mechanisms as in GaAs/InGaP HBTs
- demonstrated high quality GaAsP growth on Si substrates
- misfit dislocations in active layers diminish device performance on Si substrates
Future work (in progress)

1. Quantify effect of defects on GaAs(P) HBT performance
 - various substrates and strain relief schemes

2. Demonstrate GaAsP HBT on Si with high current gain
Acknowledgements

Funding sources:

MIT research centers: