Monitoring Microbial Communities Diversity with Cytometric Fingerprinting

Cara K. Yee1,2, Shwetha Acharya3 and Romy Chakraborty2
1Cosumnes River College, Sacramento, CA
2Transfer-to-Excellence Research Experience for Undergraduates Program, University of California, Berkeley, CA
3Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA

2021 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract
Identifying and monitoring microbial diversity within microbial communities is critical to studying both natural and engineered biogeochemical processes. Most commonly, 16S rRNA amplicon sequencing is used to understand microbial community composition, but this process is labor and time intensive. Using FCM data of bacterial consortia from a produced water (PW) bioreactor, we intend to examine currently available R-based preprocessing and cytometric fingerprinting analysis packages to develop a pipeline best suited to monitor microbial communities.

Flow Cytometry
- Flow cytometry (FCM) is a process where information and phenotypic characteristics of individual cells are rapidly collected.
- The FCM targets individual cells with a laser, producing scattered light and fluorescence which reveal specific cell phenotypic characteristics.
- These cell signals can be preprocessed and analyzed with packages that can improve data visibility, remove noise, and analyze cell signals for cell population identification or cytometric fingerprinting.

Cytometric Fingerprinting
- Cytometric fingerprinting does not identify specific cells and instead focuses on identifying and visualizing the overall structure of a community and its subcommunities—providing visualization of heterogeneity within a community.
- This visualization allows for the monitoring of the entire community’s structure and the changes in subcommunities.
- Relies on phenotypic characteristics present in the community and the phenotypic characteristic distribution within the community.

Materials and Methods

Mixing Isolates to Make Consortium

<table>
<thead>
<tr>
<th>PW1 Salinity</th>
<th>PW2 Salinity</th>
<th>CAMB 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50g/L</td>
<td>100g/L</td>
<td>100g/L</td>
</tr>
</tbody>
</table>

Consortia Sampling

Generation 0 (00) -> 3-4 day Induction
1 x 1 mL transferred to 10 x 100 mm plate

Preparation for FCM Sample Dilution

10 mL transferred to 50 mL fresh medium

Preprocessing

FlowCore: import and structure data
Inverse Hyperbolic Sine

Cytometric Fingerprinting with Phenoflow

Conclusion
- Cytometric fingerprinting workflow selected allotyping of overall cell count, phenotypic diversity, and the phenotypic similarities between generations.
- Phenotypic structure of communities are strongly dependent on the media; APM may select for few fast-growing species; PW1 and PW2 media may support greater number of species.
- Additional validation using 16s rRNA sequencing is necessary.

References

Contact Information
Cara K. Yee
(916) 896-7605 | yee.k.cara@gmail.com

Acknowledgements
We thank the Lawrence Berkeley Laboratory, the Chakraborty Group, and the UC Berkeley Transfer-to-Excellence Program for their support. This study was supported and funded by the National Science Foundation Award #1757690.