Investigating Sequence Features of elF3 and elF4A Target mRNAs
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Translationregulationis critical for maintaining cellhomeostasisand its misregulationleadsto diseasesuchascancer Translationinitiation is highly regulatedand requiresseveraleukaryoticinitiation factors (elF3. elR3
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hasbeenfound to serveasboth a scaffoldin preinitiation complexesand a regulator of translation for certain mMRNAs elHA unwinds mRNAIn preparation for recruitment to initiation complexes Both elR3 and elHA

have beenfound to bind to and regulatetranslation of the JUNmMRNA Thissuggestsa new mechanismfor translation regulationthat canalsoact on other mMRNAsnN the cell.

Fromthis analysis,we were able to identify

commonsequencefeatures of elR3 and elHA target mRNAs Asa whole, this study broadensthe understandingof the mechanismsof translation regulation mediated by elR3 and elHA, which servesasa blueprint for

targeting disease

Figure 1. First steps of translation initiation
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Fig. 1| Mechanismof translationinitiation adaptedrom Jacksoretal. (2010.1 elF3
acts as a scaffold for preinitiation complexesand elHMA unwinds mMRNA in
preparatiorfor recruitmentto initiation complexes

Figure 2. elF3 interacts with a subset of mRNAs and

regulates translation
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Fig. 2| Datafrom Leeet al. (2019 showsthe different processeandfunctionsthat

elF3 targetmRNAs areinvolved in.? As well, datashowsthat elF3 predominantly

interactswith the 56 U Td&® mRNAs Moreover, elF3 can act as a repressoror
activatorin mRNAs. In thecaseof JUN it actsasanactivator

Figure 3. elF3 binding site (PAR -CLIP site) interacts
with a stem loop in JUN
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Fig. 3| Secondarystructuredatafor ~250nt of the JUN 50 U T Rportedby Lee et
al. (2015.2 elF3 interactswith this mMRNA attheboxedregion(PAR-CLIP site).

Figure 4. Multifactor Complex (MFC)
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Fig. 4] The MFC is a translationinitiation intermediate The previously reportec
MFC by Asanoet al. (2000 wasshownto be composedf elFl, elF2, elF3, elF5
and methionyl tRNA (Met-tRNA).2 However, the Cate Lab has found a novel
humanMFC (unpublisheddata),which was found to be composedof elF2, elR3,
elHA, elFAG and Met-tRNA. (Figure courtesyof AngélicaM. GonzalezSanchez
createdwith BioRendercom).

Figure 5. elF4A target sequences
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Fig. 5| lwasakiet al. (2016 publisheda study about RocaglamideA (RocA), a
compoundthat clampselHA onto specific MRNA sequence$ The study showed
that JUN washighly sensitiveto RocA, meaningit is anelHA targetmRNA. They
alsoshowedthatGAAG andGAAA aretargetsequencesf elHA.

« To investigate the sequence features of a select group of

MRNASs that are elF3 and elF4A target mRNAs
* To find common sequence features between a select

group of elF3 and elF4A target mMRNAs and hypothesjze
a mechanism for translation regulation of these mRNAS

Figure 6. mMRNAs chosen for further

analysis
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Fig. 6/ Using DAVID BioinformaticsResource®atabasea
subsebf 21 mMRNAswerefoundto havecommonfunctions
of nuclearprocesseandRNA binding

Figure 7. PAR-CLIP site length per
mRNA
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Fig. 7| Using IGV, the PAR-CLIP sequencef eachmRNA
was found most of PAR-CLIP sites were recordedto be ~

30nt long.

Figure 8. Location of the PAR-CLIP
site per mRNA
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Fig. 8| By mappingthe PAR-CLIP sequencethe locationof
the PAR-CLIP wasfoundfor eachmRNA. While mostwere
found in the annotatedbd U T somePAR-CLIP siteswere
foundin otherregions

Figure 9. Quantification of elF4A target
sequences relative to the PAR-CLIP site
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Fig. 9] The amountof GAAA/Gs were quantified in the
regions-200nt 50of the PAR-CLIP siteand+200nt 300f the
PAR-CLIP site

Figure 10. Quantification of secondary
structure predictions
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Fig. 11| Using University of ViennaRNAFold WebSevei&
Mathews Group RNAstructure PredictionWeb Serverthe
secondarystructurewas found for the PAR-CLIP site &
elHA targetswithin ~ +/- 200nt of the PAR-CLIP.

Figure 11. BRD2 secondary structure
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Fig. 11| Secondarystructure prediction for a region of
BRD20 s50 U T RPAR-CLIP site and an elHA target
sequencéGAAA) secondanstructurepredictionareshown
In red and blue box respectively The PAR-CLIP is

Figure 12. elF4A targets per region per
MRNA
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Fig. 12 The elHA targets(GAAA/G) were countedper
regionper mMRNA. Most mRNAs showeda greateramoun
of GAAA/G sequencesentheCDSopposedothe50 U T

« ThemRNAsthatwerebothtargetsof elF3 andelHA had
many common functions including some that were
previouslyseenn elF3 targetmRNAS

« Most of the PAR-CLIP siteswerefoundto be ~30nt long,
giving anestimateof the sequencéengthelF3 bindsto

* While the PAR-CLIP sitesin mostmRNAs werefoundin
the 56 U TsRpportingthe Lee et al. (2015 data,elF3 was
seeno alsointeractin otherregionsof the mRNA

« Someregionsof the 56 U Twvirere poorly annotatedn the

databasesyvhich we havelabeledasih u n a n n59 U3 R e ¢

for the purpose®f this study

 The CDS containsmore elHA targetseguenceshanthe
56 U T potentially due to the substantialdifference in
lengths

 None of the elFH4A target sequencesvere found on the
PAR-CLIP site and the majority were found upstreamof
the PAR-CLIP site

« Mostof the PAR-CLIP siteswerefoundin stemsandstem|
loopssuggestinghatelR3 bindsto highly structurecareas

 The elHA target sequencesvere found in a variety of
secondanstructuresvhich canbe potentiallyexplainedoy
thefactthatelHMA scanamRNAsratherthanbindsto them
like elF3
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predominantlyin a stemloop while the GAAA is in astem
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