Investigating Sequence Features of elF3 and elF4A Target mRNAs
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Translation regulation is critical for maintaining cell homeostasis and its misregulation leads to diseases such as cancer. Translation initiation is highly regulated and requires several eukaryotic initiation factors (elFs). elF3
has been found to serve as both a scaffold in preinitiation complexes and a regulator of translation for certain mRNAs. elF4A unwinds mRNA in preparation for recruitment to initiation complexes. Both elF3 and elF4A
have been found to bind to and regulate translation of the JUN mRNA. This suggests a new mechanism for translation regulation that can also act on other mRNAs in the cell. From this analysis, we were able to identify
common sequence features of elF3 and elF4A target mRNAs. As a whole, this study broadens the understanding of the mechanisms of translation regulation mediated by elF3 and elF4A, which serves as a blueprint for

targeting disease.
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Fig. 1| Mechanism of translation initiation adapted from Jackson et al. (2010).t elF3
acts as a scaffold for pre-initiation complexes and elF4A unwinds mRNA iIn
preparation for recruitment to initiation complexes.

Figure 2. elF3 interacts with a subset of mRNAs and

regulates translation
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Fig. 2| Data from Lee et al. (2015) shows the different processes and functions that
elF3 target mRNAs are involved in.? As well, data shows that eIlF3 predominantly
interacts with the 5’UTR of mRNAs. Moreover, elF3 can act as a repressor or
activator in mRNAs. In the case of JUN it acts as an activator.

Figure 3. elF3 binding site (PAR-CLIP site) interacts
with a stem loop in JUN
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Fig. 3| Secondary structure data for ~250nt of the JUN 5’UTR, reported by Lee et
al. (2015).2 elF3 interacts with this mRNA at the boxed region (PAR-CLIP site).

Figure 4. Multifactor Complex (MFC)
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Fig. 4| The MFC 1s a translation initiation intermediate. The previously reported
MFC by Asano et al. (2000) was shown to be composed of elF1, elF2, elF3, elF5
and methionyl tRNA (Met-tRNA).> However, the Cate Lab has found a novel
human MFC (unpublished data), which was found to be composed of elF2, elF3,
elF4A, elF4G and Met-tRNA. (Figure courtesy of Angélica M. Gonzalez-Sanchez,
created with BioRender.com).

Figure 5. elF4A target sequences
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Fig. 5| Iwasaki et al. (2016) published a study about Rocaglamide A (RocA), a
compound that clamps elF4A onto specific mRNA sequences.* The study showed
that JUN was highly sensitive to RocA, meaning it is an eIF4A target mRNA. They
also showed that GAAG and GAAA are target sequences of elF4A.
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Figure 6. mMRNAs chosen for further

analysis
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Fig. 6| Using DAVID Bioinformatics Resources Database, a
subset of 21 mMRNAs were found to have common functions
of nuclear processes and RNA binding.

Figure 7. PAR-CLIP site length per
mRNA
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Fig. 7| Using IGV, the PAR-CLIP sequence of each mRNA
was found most of PAR-CLIP sites were recorded to be ~

30nt long.

found in the annotated 5’UTR, some PAR-CLIP sites were

found in other regions.

Figure 9. Quantification of elF4A target

sequences relative to the PAR-CLIP site
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Fig. 9] The amount of GAAA/Gs were quantified in the
regions -200nt 5’ of the PAR-CLIP site and +200nt 3’ of the

PAR-CLIP site.

Figure 10. Quantification of secondary
structure predictions
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Fig. 11| Using University of Vienna RNAFold WebSever &
Mathews Group RNAstructure Prediction Web Server the
secondary structure was found for the PAR-CLIP site &

elF4A targets within ~ +/- 200nt of the PAR-CLIP.
Figure 11. BRD2 secondary structure
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Fig. 11| Secondary structure prediction for a region of
BRD2’s 5’UTR. PAR-CLIP site and an elF4A target
sequence (GAAA) secondary structure prediction are shown
in red and blue box respectively. The PAR-CLIP is

predominantly in a stem loop while the GAAA 1s 1n a stem.

Fig. 12| The elF4A targets (GAAA/G) were counted per
region per mRNA. Most mRNAs showed a greater amount
of GAAA/G sequences on the CDS opposed to the S’UTR.
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 The mRNAs that were both targets of elF3 and elF4A had
many common functions including some that were
previously seen in elF3 target mRNAs

* Most of the PAR-CLIP sites were found to be ~30nt long,
giving an estimate of the sequence length elF3 binds to

* While the PAR-CLIP sites in most mRNAs were found in
the 5’UTR supporting the Lee et al. (2015) data, elF3 was
seen to also interact in other regions of the mRNA

* Some regions of the S’UTR were poorly annotated in the
databases, which we have labeled as “unannotated 5’UTR”
for the purposes of this study

 The CDS contains more elF4A target sequences than the
5’UTR potentially due to the substantial difference in
lengths

 None of the elF4A target sequences were found on the
PAR-CLIP site and the majority were found upstream of
the PAR-CLIP site

* Most of the PAR-CLIP sites were found in stems and stem
loops suggesting that eIF3 binds to highly structured areas

 The elF4A target sequences were found in a variety of
secondary structures which can be potentially explained by
the fact that elF4A scans mRNAs rather than binds to them
like elF3
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