2019 E3S Annual Retreat University of California, Berkeley, September 19-20, 2019

Magnetization Switching Using Spin Orbit Torques from Sputtered Conductive WTe_x

Xiang (Shaun) Li,

Mahendra DC, Chong Bi, and S. X. Wang Materials Science and Engineering, Electrical Engineering Peng Li, Yuri Suzuki Applied Physics

Stanford University

Massachusetts Institute of Technology STANFORD UNIVERSITY

CALIFORNIA COMMUNITY COLLEGES CHANCELLOR'S OFFICE

Center for Energy Efficient Electronics Science

A Science & Technology Center

SOT-MRAM Towards SRAM Performance

A Science & Technology Center

Bit switching energy estimates:

~250 fJ @ 110 nm

Scaling down possibility:

~10 fJ @ 22 nm ~0.5 fJ @ 5 nm

Sato, Wang, et al., Nature Electronics, 1(9), 508, 2018

Page 3 Center for Energy Efficient Electronics Science

Leverage New Physics for More Efficient Write

Topological Insulator and Weyl Semimetals

A Science & Technology Center

Center for Energy Efficient Electronics Science

Sputtered Weyl Semimetal WTe_x

- Sputter deposition desired for industry adoption
- Signature Raman peaks of sputtered WTe₂

Xiang Li, Shan Wang, et al., in preparation

Y. C. Jiang, J. Gao, and L. Wang, *Scientific Reports*, vol. 6, p. 19624, 01/22/online 2016

Page 6 Center for Energy Efficient Electronics Science

A Science & Technology Center

9/19/2019

• TEM shows W:Te ratio of 1:1.34 with visible WTe_x grains/clusters

Xiang Li, Shan Wang, et al., in preparation

Q Shao, Kang Wang et al., 2018 IEDM

Page 8

Center for Energy Efficier

Electronics Science

Charge-to-spin conversion efficiency characterized using harmonic current induced magnetization oscillation
*H*_{DL} is the damping-like effective field that drives switching

Xiang Li, Shan Wang, et al., in preparation

9/19/2019

Charge-to-Spin Conversion Efficiency

- Mo between WTe₂ and CoFeB partially absorb spin-polarized electrons $\xi_{ST} = \frac{2eM_S t_{CoFeB}}{H_{DL}}$
- Real ξ_{ST} value of WTe₂ should be larger

Xiang Li, Shan Wang, et al., in preparation

J_{WTe2}

Paae 9

Center for Energy Efficien

Electronics Science

9/19/2019

Unidirectional Spin Hall Magnetoresistance (USMR)

Benchmark: Power Efficiency of SOT-MTJ Cell

Center for Energy Efficient Electronics Science

High Frequency Current Induced Magnetic Resonance

• Fitted resonance peak with symmetric and asymmetric Lorentzian line shapes

9/19/2019

A Science & Technology Center

Xiang Li, Shan Wang, et al., in preparation

Page 13 Center for Energy Efficient Electronics Science

SOT-MTJ Integration and Test

Page 14 Center for Energy Efficient Electronics Science

BE

Conclusions

- MRAM holds great promise to **replace or complement SRAM** for data-centric applications as **high-density on-chip memory**
- Unique topological band structure gives rise to highly spin polarized electrons in Weyl semimetal WTe₂
 - Sputtered 5 nm WTe_x at room temperature shows attractive charge-to-spin conversion efficiency (**0.5**), low switching current density (**1 MA/cm²**), and low thin film resistivity (**570** $\mu \Omega \cdot cm$)

Paae 1

- Greatly improved energy/delay performance compared with other topological materials such as BiSe or exfoliated WTe₂
- Even larger charge-to-spin conversion efficiency up to **0.8**

Acknowledgements

CONIX COGNITIVE CONPUTING IN TO THE SENSOR A COMM. SYSTEMS ComSenTe C-BRIC JUMP MENORY AND STORAGE ADVANCED DEVICES ASCENT CRISP ADVANCED ACHITECTURES AND ALCOUTINES AND ADA **Center for Energy Efficient Electronics Science** System**X** ALLIANCE **NMTRI** Non-volatile Memory Technology Research Initiative **Stanford University** Page 16 9/19/2019 A Science & Technology Center Center for Energy Efficient

Electronics Science