Massachusetts Institute of Technology

III-V epitaxy for low energy optoelectronics

PI: Jeehwan Kim

Mechanical Engineering Materials Science and Engineering Research Laboratory of Electronics Microsystem Technology Laboratories

Student III-V: Yunjo Kim, Kuangye Lu III-N: Kuan Qiao, Yunpeng Liu Oxide: Sangho Lee

Postdoc

Sanghoon Bae, Hyunseok Kim Wei Kong Hyun Kum

> Jeehwan Kim Research Group http://jeehwanlab.mit.edu

Epitaxial strategies enabling low energy optoelectronics

Etch stop optimization

Calibration of InGaAsP (λ =1200nm) etch stop

Assuming distribution coefficient remain constant with incremented flowrates Flow rates were adjusted accordingly to achieve target composition of $In_{0.729}Ga_{0.271}As_{0.585}P_{0.415}$

TMIn (mol/min)	TMGa (mol/min)	PH3 (mol/min)	AsH3 (mol/min)
6.56E-5	1.758E-5	1.35E-2	5.960E-4

Negligible shift in the distribution coefficient was observed, target composition was achieved in updated recipe Increase in PL peak intensity was attributed lower contamination in InGaAsP layer due to prior effort to decontaminate chamber before growth

XRD RSM analysis

Strategy to interointegrate nano-LED on Si: Remote epitaxy

Perfect single-crystalline planar films can be grown on 2D materials

Polarity governs remote atomic interaction through 2D materials

Cost-effective method produces semiconducting films from materials that outperform silicon.

Polarity of 3D materials determines field penetration Polarity of 2D materials determines field screening

W. Kong,...and <u>J. Kim</u>*, *Nature Materials*, Vol. 17, 335 (2018)
S. Bae..., and <u>J. Kim</u>*, *Nature Materials*, Vol 18, 550 (2019)

1% strained InGaP on GaAs

Bae et al, and <u>Kim</u>*, *Nature Nanotechnology* (2019) *under revision*

Thikcness (nm)

New critical thickness on slippery graphene

Bae et al, and Kim*, Nature Nanotechnology (2019) under revision

Remote epitaxy for complex oxides

Heterointegration: Magnetoelectric coupling of freestanding oxides (PMNPT+CFO)

Magnetostatic + electrical coupling of freestanding oxides (YIG + CFO)

Kum et al, and <u>Kim</u>*, *Nature* (2019) *under revision*

Potential of remote epitaxy

MicroLEDs High efficiency PV Transistor

Wireless system Power system

Photodetector

Phi

Piezoelectric sensor Optical waveguide Battery

Monolayer graphene + Wafer

= Copy Machine (Film producer)

Self-powered/analyzed electronic wireless system

Micro-LED Display

GaN LED

AllnGaP LED

Challenges in remote epitaxy

- 1. Weak field penetration due to 30% ionicity
- 2. Native oxide formation during graphene transfer

Key to succeed on remote epitaxy: Graphene transfer

Crystallinity of GaAs completely depends on graphene transfer methods CVD graphene wet transfer does not allow complete single-crystallinity

Key to succeed on remote epitaxy: Graphene transfer

Single-crystallinity secured if epitaxial graphene is dry transferred

Growth of graphene on GaAs (Generation 3, since 2018)

Direct growth in furnace

Grown graphene improves morphology

Wafer reusability: Manual graphene transfer creates holes in graphene

Defect (holes) formation after graphene transfer

- → Micro-spalling marks on GaAs form after 2DLT
- → Challenging to perform 2nd graphene transfer on GaAs wafers

Direct growth of graphene eliminates holes

Plan B: Graphene-free mechanical transfer

Cleavage plane assisted exfoliation

III-V optoelectronics on Si

With Prof. Ming Wu

Nanoelectronics Group at MIT

Nature (2019)