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Epitaxial strategies enabling low energy optoelectronics

Si photonic waveguide

antenna enhanced LED photodetector

Thrust 1: Optimization of LED stack

Thrust 2: Layer transfer technology for heterointegration
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Calibration of InGaAsP (λ =1200nm) etch stop

TMIn (mol/min) TMGa (mol/min) PH3 (mol/min) AsH3 (mol/min)

6.56E-5 1.758E-5 1.35E-2 5.960E-4

Assuming distribution coefficient remain constant with incremented flowrates
Flow rates were adjusted accordingly to achieve target composition of In0.729Ga0.271As0.585P0.415

[004] reciprocal lattice index [224] reciprocal lattice index

XRD RSM analysis
PL Spectra

new λpeak = 1202 nm

Negligible shift in the distribution coefficient was observed, target composition was achieved in updated recipe
Increase in PL peak intensity was attributed lower contamination in InGaAsP layer due to prior effort to decontaminate chamber before 
growth
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Strategy to interointegrate nano-LED on Si: Remote epitaxy 
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Perfect single-crystalline planar films can be grown on 2D materials

Application: 2D material-based layer transfer (2DLT)

Y. Kim et al., and J. Kim., Nature 544, 340 (2017) 
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Polarity governs remote atomic interaction through 2D materials
DFT thermodynamic calculation

Polarity of 3D materials determines field penetration 
Polarity of 2D materials determines field screening

W. Kong,…and J. Kim*, Nature Materials, Vol. 17, 335 (2018)
S. Bae…, and J. Kim*, Nature Materials, Vol 18, 550 (2019)



Remote heteroepitaxy: Dislocation-free heteroepitaxy
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Bae et al, and Kim*, Nature Nanotechnology (2019) under revision



New critical thickness on slippery graphene

Bae et al, and Kim*, Nature Nanotechnology (2019) under revision



Remote epitaxy for complex oxides

Wafer reusability

Heterointegration: Magnetoelectric coupling of freestanding oxides (PMNPT+CFO)



Heterointegration of complex oxides

Magnetostatic + electrical coupling of freestanding oxides (YIG + CFO)

Kum et al, and Kim*, Nature (2019) under revision



Potential of remote epitaxy

Monolayer graphene  + Wafer
= Copy Machine (Film producer)
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Micro-LED Display
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Challenges in remote epitaxy

1. Weak field penetration due to 30% ionicity
2. Native oxide formation during graphene transfer



Key to succeed on remote epitaxy: Graphene transfer

3184

Wet transfer of CVD graphene on GaAs (Generation 1, 2016)
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Crystallinity of GaAs completely depends on graphene transfer methods
CVD graphene wet transfer does not allow complete single-crystallinity



Key to succeed on remote epitaxy: Graphene transfer
Dry transfer (LRGT) of epitaxial graphene on GaAs (Generation2, 2017 Nature)
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Wafer reusability: Manual graphene transfer creates holes in graphene

Defect (holes) formation after graphene transfer
à Micro-spalling marks on GaAs form after 2DLT
à Challenging to perform 2nd graphene transfer on GaAs wafers

100 GaAs

100 GaAs

Micro-spalling!

100 GaAs

100 GaAs

Direct growth of graphene eliminates holes 



Plan B: Graphene-free mechanical transfer
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Future Direction for E3S: Transfer for advanced heterointegration

III-V optoelectronics on Si

InGaAs

InP wafer

Remote epitaxy of InGaAs
through graphene

InP wafer

InGaAsP bottom contact
InP bottom contact

InP cladding
InGaAs active
InP cladding

InP top contact

InGaAs top contact

Remote epi of InGaAs LED

InP wafer

Peel

InGaAsP bottom contact
InP bottom contactInP claddingInGaAs activeInP claddingInP top contactInGaAs top contact

Si photonic waveguide

Antenna enhanced LED (TRANSFERRED) photodetector
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Nanoelectronics Group at MIT
Freestanding semiconductors

GaAs (100)InP (100) GaP (100)GaAs (111)GaN (1000)

Nature (2017), Nature Materials (2018), Nature Materials (2019)
Nature Nanotech (2019)

Heterointegrations

Wafer-scale 2D Materials Group

Science (2018)

Nature Materials (2018)

Nature (2019)

AI hardware


