Variability Study for Low-Voltage Microelectromechanical Relay Operation

Benjamin Osoba, Member, IEEE, Bivas Saha, Sergio F. Almeida, Jatin Patil, Laura E. Brandt, Member, IEEE, Maurice E. D. Roots, Edgar Acosta, Junqiao Wu, and Tsu-Jae King Liu, Fellow, IEEE

Abstract—Body-biased microelectromechanical relays previously have been developed for ultralow-power digital logic applications and demonstrated to reliably switch ON/OFF with sub-50-mV gate voltage swing. Since variability in relay switching voltages can practically limit reduction in the operating voltage of a relay-based integrated circuit, the effects of process-induced variations and device operating conditions, as well as the stability of relay switching voltages, are investigated in this paper. Antistiction coating is shown to stably reduce hysteresis voltage and random variation thereof, which is beneficial for voltage scaling.

Index Terms—Antistiction, body bias, microelectromechanical (MEM) relay, molecular coating, perfluorooctyltriethoxysilane (PFOTES), process-induced variation, switching stability, variability.

I. INTRODUCTION

For decades, the growth of the semiconductor industry has been enabled by the steady miniaturization of semiconductor-based switches, predominantly MOSFETs, in accordance with Moore’s Law. In recent years, however, the incremental benefits of transistor scaling have been diminished due to nonideal switching behavior—in particular, nonzero leakage current (I_{OFF}) and temperature-dependent nonzero subthreshold swing (SS)—limiting the extent to which the transistor threshold voltage and hence the IC operating voltage (V_{DD}) can be lowered beneficially [1]. Therefore, there have been many efforts to develop alternative solid-state switch designs that can achieve more ideal (i.e., abrupt) switching characteristics [2]–[4].

Although experimental transistor designs such as the tunnel field-effect transistor (TFET) [2] and negative capacitance FET (NC-FET) [3] can achieve steeper switching characteristics than the MOSFET, they also can be more sensitive to process-induced variations and device operating conditions which practically limit their benefits. For example, switching abruptness can be degraded by trap-assisted tunneling due to interfacial defects in a TFET [5] and by polarization screening in an NC-FET [6].

Microelectromechanical (MEM) switches can achieve immeasurably low I_{OFF} and abrupt switching behavior across a wide range of temperatures [7]; in principle, they can be operated with much lower voltage than can any type of transistor. (Although they switch more slowly than do transistors, circuit design optimization to minimize the number of mechanical switching delays per function can compensate for this [8].) Thus, MEM switches are of keen interest for digital IC applications for which energy efficiency is paramount, such as wirelessly networked devices in the emerging Internet of Things.

A body-biased MEM relay design was previously developed for digital IC applications [9] and shown to provide for the most energy efficient operation [10]. With antistiction coating to reduce the hysteresis voltage (V_{H}), relay operation with sub-50-mV gate voltage (V_{G}) swing has been demonstrated [11]. However, variability in relay switching voltages (namely, the pull-in voltage V_{PI} and the release voltage V_{RL}, $V_{H} \equiv |V_{PI} - V_{RL}|$) can practically limit reductions in operating voltage. Therefore, the effects of process-induced variations and device operating conditions, as well as the stability of relay switching voltages, are investigated in this paper. A nonzero strain gradient within the structural layer is found to mitigate the effect of systematic variation in layer thickness, but to result in significant random variation, which is identified to...
be the primary limiter of V_{DD} scaling for relay-based circuits. More specifically, such strain gradient causes out-of-plane deflection upon release, in turn affecting the actuation gap size g; because this out-of-plane deflection is reduced for thicker structural layers, the effects on V_{PI} for stiffer structures are reduced [12]. Antistiction coating is found to be effective for stably reducing V_{H} magnitude and random variation, to facilitate V_{DD} reduction.

II. Relay Structure and Operation

The six-terminal relay design [13] used in this paper includes a movable gate electrode suspended by four folded-flexure suspension beams over a fixed body electrode on an insulating substrate, as shown in Fig. 1. Narrow conductive strips are attached underneath the movable electrode (but electrically insulated from it by an intermediary layer of Al$_2$O$_3$), so that each of them comes into contact with a pair of source and drain electrodes—allowing current to flow between source and drain—when a sufficiently large voltage is applied between the gate and body to electrostatically actuate the movable electrode downward.

The relay fabrication process flow is described in [13]. The structural material (used for the gate electrode and suspension beams) is polycrystalline silicon germanium (poly-Si$_{0.4}$Ge$_{0.6}$) deposited by low-pressure chemical vapor deposition (LPCVD) at 410 °C; the fixed electrode material (used for gate–source–drain electrodes) is tungsten (W) deposited by sputtering; the substrate and channel insulating layers of Al$_2$O$_3$ were deposited by atomic layer deposition (ALD) at 300 °C and plasma-enhanced ALD at 250 °C, respectively. The air gaps in the actuation region and contact regions were formed by selectively removing sacrificial layers of SiO$_2$ (deposited by LPCVD at 400 °C), to “release” the structure for movement. Nominal film and air gap thicknesses are listed in Table I.

Note that the relays were designed to operate in nonpull-in mode (i.e., the nominal contact gap size g_d is less than one-third the nominal actuation gap size g) to minimize hysteretic switching behavior. However, due to nonzero strain gradient in the poly-Si$_{0.4}$Ge$_{0.6}$ [12] causing out-of-plane deflection upon release (substantially increasing both g_d and g), the relays in this paper actually operate in pull-in mode (and hence have larger hysteresis voltage), so that the switching voltages are given by the following equations:

$$V_{PI} = \frac{\sqrt{8k_{eff}g^3}}{27\varepsilon_0 A}$$ \hspace{1cm} (1)

$$V_{RL} = \sqrt{\frac{2(k_{eff}g_d - F_A)(g - g_d)^2}{\varepsilon_0 A}}$$ \hspace{1cm} (2)

where k_{eff} is the effective spring constant, ε_0 is the vacuum permittivity, A is the effective actuation area, and F_A is the contact adhesive force.

III. Experimental Results

The relays in this paper were tested at room temperature under vacuum (~ 1.5 μTorr). Fig. 2 shows typical dc measurements (forward and backward V_G sweeps, monitoring drain-to-source current) of relay switching behavior. As explained
in [10], high device manufacturing yield can be achieved by designing relays to have relatively stiff structures and large air gaps as fabricated; subsequently they can be made to operate with a small \(V_G \) swing by applying a bias voltage \(V_B \) to the body. [Note: The shift in gate switching voltage is slightly smaller than the magnitude of the body-bias voltage because the body electrode has slightly smaller area than does the gate electrode, as can be seen from Fig. 1(a).]

The minimum operating voltage of a relay is equal to the minimum \(V_G \) swing required to switch the device on/off, which cannot be smaller than \(V_H \). For a circuit comprising many devices, \(V_D \) scaling is constrained by the maximum and minimum values of \(V_{PI} \) and \(V_{HG} \), respectively. Process-induced variations in relay dimensions, as well as random variations in \(F_A \) from device to device and over the device operating lifetime, result in switching voltage variations discussed in Section III-B.

A. Relay Switching Voltage Stability

Fig. 3 shows measured switching voltages for 100 sequential dc measurements made on a single body-biased relay. It should be noted that this switching operation is much more stressful than operation within a digital IC where a relay would only sustain a significant voltage drop across the source and drain electrodes and conduct current for very short periods of time corresponding to the \(RC \) charging delay (~1 ps) [8]. \(V_{PI} \) is very stable after the first ~20 sweeps. \(V_H \) varies slightly (by ~20 mV), likely due to variation in actual contact area for each switching cycle. Weak dependence on the drain-to-source voltage \(V_{DS} \) is seen.

Fig. 4 shows that body biasing is generally advantageous for improving switching voltage stability (i.e., reducing variability in \(V_{PI} \) and \(V_H \)).

B. Process-Induced Variations

The LPCVD processes used to deposit the SiO\(_2\) and poly-Si\(_{0.4}\)Ge\(_{0.6}\) layers in this paper resulted in significant systematic variations across a wafer (i.e., die–die) and random variations from device to device, in the thicknesses of the actuation and contact gaps and the movable structure, as determined using an Olympus LEXT OLS4000 3D confocal laser microscope.

Fig. 5(a) shows how \(V_{PI} \) varies with poly-Si\(_{0.4}\)Ge\(_{0.6}\) thickness \(t \), actuation gap \(g \), and \(V_B \) is as follows:

\[
V_{PI} = \left(\left(\frac{g \times t}{g_0 \times t_0} \right)^{3/2} \right) \times V_{PI0}.
\]

By comparing the measured \(V_{PI} \) values against the theoretically predicted trend based on (3), taking into account the negative correlation between structural layer thickness and actuation gap size as shown in Fig. 5(b), it can be seen that random sources of variation are predominant. (Measured values \(g_0 = 0.35 \, \mu \text{m}, t_0 = 1.5 \, \mu \text{m}, \) and \(V_{PI0} = 11.9 \, \text{V} \) were used to calibrate the theoretical curve.) The systematic variation is relatively small and can be further reduced in a relatively straightforward manner with an improved LPCVD process control. Fig. 5(c) shows that there is a significant random variation in \(V_H \), which depends on local contact properties that vary from device to device. Switching voltage variations practically limit the extent to which \(V_D \) can be reduced: in practice, a single negative value of \(V_B \) should be used for all of the “pull-down” relays within a circuit block, while another single positive value of \(V_B \) should be used for all of the “pull-up” relays within a circuit block; to guarantee that every relay is functional, \(|V_B| \) can be no larger than the smallest \(|V_{RL}| \).

Fig. 6 shows the variation in switching voltages for relays located side by side on a single die, with the same value of \(V_B \) that was chosen to guarantee circuit functionality. Although \(V_H \) can be less than 100 mV, random variability limits \(V_{DD} \) to be not less than ~0.9 V for this die. More uniform (device–device) switching voltages are necessary to overcome this issue, to fully realize the benefit of relay technology for ultralow-voltage ICs.

C. Effects of Antistiction Coating

In prior work, we demonstrated that a hydrophobic coating of perfluorodecyltriethoxysilane (PFDTES) is effective for reducing \(V_H \), but at a tradeoff of increased SS, i.e., less abrupt switching behavior [11]. As seen in Fig. 7, a molecular coating with a shorter perfluoro chain, perfluorooctyltriethoxysilane (PFOTES), was used in this paper to mitigate the aforementioned tradeoff.
Fig. 5. Measured impact of process-induced variations in poly-Si$_{0.4}$Ge$_{0.6}$ thickness on (a) V_{PI} for relay operated at $V_B = 0$ V, (b) actuation gap g, and (c) hysteresis voltage V_H. The negative correlation between the structural layer thickness and actuation gap size is due to the reduced out-of-plane deflection for a stiffer structure. $L = 12 \mu$m.

Fig. 6. Measured switching voltages for multiple relays operated at $V_{DS} = 1$ V, $V_B = -14.5$ V. $L = 8 \mu$m.

As can be seen from Fig. 8, a PFOTES-coated relay can be fully switched between ON and OFF states with sub-50-mV V_G swing.

Fig. 7. Molecular structure of (a) PFDTES versus (b) PFOTES.

Fig. 8. Measured I–V characteristics for body-biased relays, showing the effects of antistiction coatings. $L = 12 \mu$m.

Fig. 9. (a) Measured I–V characteristics. (b) Evolution of measured V_H for PFOTES-coated MEM relay operated over 100 gate voltage sweeps at $V_{DS} = 1$ V and body-biased conditions. These data indicate significantly decreased value and variability in V_H due to the PFOTES coating. $L = 8 \mu$m.

Fig. 9 shows that low V_H is stably maintained with PFOTES coating over many switching cycles.

The data in Fig. 10(a) affirm that relay switching stability is improved with the antistiction coating. Fig. 9(b) shows that
device to device variation in V_B is also significantly improved, indicative of more uniform contact properties for the coated relays.

IV. DISCUSSION

The results of this paper indicate that variation in V_{PI} will practically limit V_{DSS} reduction for relay-based ICs. Because the microstructure of the LPCVD poly-Si$_{0.4}$Ge$_{0.6}$ structural film is highly nonuniform [12], out-of-plane deflection due to nonzero strain gradient is significant and varies from device to device, resulting in large random variation in V_{PI} as seen in Fig. 5. This issue can be mitigated using a much thicker (stiffer) poly-Si$_{0.4}$Ge$_{0.6}$ film, but at a tradeoff of a much larger gate-to-body voltage required to turn ON the relay, i.e., V_{PI}.

V. CONCLUSION

The effects of process-induced variations, device operating conditions, and antistiction coating on the variability and stability of MEM relay switching voltages were studied in this paper. Tight control ($\pm 1\%$) of the structural layer thickness and the actuation and contact gap thicknesses are necessary to enable sub-100-mV relay-based circuit operation. In this regard, a structural layer material with low residual stress and an amorphous microstructure may be necessary to minimize random out-of-plane deflection. An optimized antistiction coating is effective for reducing hysteresis and random variation thereof, and hence, is expected to facilitate the practical implementation of sub-100-mV relay-based circuits. Furthermore, variation in V_{PI} is reduced with the antistiction molecular coating.

ACKNOWLEDGMENT

The microelectromechanical relays were fabricated in the Marvell Nanofabrication Laboratory at the University of California at Berkeley, Berkeley, CA, USA.

REFERENCES

Benjamin Osoba (M’16) received the B.S. degree in electronics engineering from Norfolk State University, Norfolk, VA, USA, in 2014, and the M.S. degree in electrical engineering from the University of California at Berkeley, Berkeley, CA, USA, in 2017, where he is currently pursuing the Ph.D. degree in electrical engineering.
Bivas Saha received the B.Sc. degree from Jadavpur University, Kolkata, India, in 2007, the M.S. degree from the Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India, in 2010, and the Ph.D. degree from Purdue University, West Lafayette, IN, USA, in 2014. He is currently a Post-Doctoral Scholar with the Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA.

Maurice E. D. Roots is currently pursuing the B.S. degree in physics with Hampton University, Hampton, VA, USA. He is currently an Undergraduate Fellow with the NOAA-Center for Earth System sciences and Remote Sensing Technologies, Department of Atmospheric and Planetary Sciences, and a 2018 NOAA Ernest F. Hollings Scholar.

Sergio F. Almeida received the B.S. degree in mechatronics engineering from the Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico, in 2007, and the M.S. and Ph.D. degrees in electrical engineering from the University of Texas at El Paso, El Paso, TX, USA, in 2010 and 2013, respectively. He is currently a Post-Doctoral Researcher with the University of California at Berkeley, Berkeley, CA, USA.

Edgar Acosta is currently pursuing the B.S. degree in electrical and computer engineering with the University of Texas at El Paso, El Paso, TX, USA. He is currently a Research Assistant with the University of Texas at El Paso. His current research interests include nanoelectromechanical systems and transition metal dichalcogenides.

Jatin Patil is currently pursuing the B.A.Sc. degree in nanotechnology engineering with the University of Waterloo, Waterloo, ON, Canada. He was a Visiting Research Scholar with the Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA, and the University of California at Berkeley, Berkeley, CA, USA, in 2017.

Junqiao Wu received the B.S. degree from Fudan University, Shanghai, China, the M.S. degree from Peking University, Beijing, China, and the Ph.D. degree from the University of California at Berkeley, Berkeley, CA, USA. He is currently a Professor of materials science and engineering with the University of California at Berkeley. His current research interests include electronic materials.

Laura E. Brandt (M’13) is currently pursuing the B.S. degree in electrical engineering and the B.A. degree in physics with the University of California at Berkeley, Berkeley, CA, USA. In 2017, she held an internship with Sierra Nevada Corporation, Sparks, NV, USA, where she designed solutions to monitor rocket engine combustion instability. Her current research interests include system reliability, system health monitoring, instrumentation, and control in harsh environments.

Tsu-Jae King Liu (SM’00–F’07) received the B.S., M.S., and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, USA. She currently holds the TSMC Distinguished Professorship in microelectronics with the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA.