Functionalized Poly(3-hexylthiophene)s via Lithium–Bromine Exchange

Byungjin Koo, †‡ Ellen M. Sletten, † and Timothy M. Swager*, †

†Department of Chemistry and ‡Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Supporting Information

ABSTRACT: Poly(3-hexylthiophene) (P3HT) is one of the most extensively investigated conjugated polymers and has been employed as the active material in many devices including field-effect transistors, organic photovoltaics, and organic photovoltaics. Unsubstituted PT is highly crystalline and thus insoluble, hampering its processability; however, 3-hexyl substitution overcomes these limitations. The synthesis of poly(3-hexylthiophene) (P3HT) has been studied extensively over the last few decades. Grignard metathesis (GRIM) polymerization is a particularly powerful approach and allows for the large-scale preparation of highly regioregular P3HT at noncryogenic reaction temperatures.

In order to enhance and fully exploit the properties of PTs, facile chemical modification of PTs is necessary. In particular, the tailoring of PT properties has largely focused on the addition of alkyl or functional side chains to the 3- and/or 4-positions in order to expand their structure in order to expand their structure. Polythiophenes (PTs) are the most widely studied conjugated polymers in organic electronics and are currently employed in field-effect transistors, organic photovoltaics, and organic photovoltaics. Unsubstituted PT is highly crystalline and thus insoluble, hampering its processability; however, 3-hexyl substitution overcomes these limitations. The synthesis of poly(3-hexylthiophene) (P3HT) has been studied extensively over the last few decades. Grignard metathesis (GRIM) polymerization is a particularly powerful approach and allows for the large-scale preparation of highly regioregular P3HT at noncryogenic reaction temperatures.

In order to enhance and fully exploit the properties of PTs, facile chemical modification of PTs is necessary. In particular, the tailoring of PT properties has largely focused on the addition of alkyl or functional side chains to the 3- and/or 4-positions in order to expand their structure—property relationships for improved utility in optoelectronic devices. For example, Ueda and co-workers reported regioregular PTs with phenyl and pyridyl side chains, which have resulted in decreased band-gaps as a result of extended π-conjugation. For example, Ueda and co-workers reported regioregular PTs with phenyl and pyridyl side chains, which have resulted in decreased band-gaps as a result of extended π-conjugation. Ludwigs and co-workers reported that head-to-tail PTs having an alkylthiophene side chain display a 30% increase in open circuit voltage (Voc) in solar cells, which was attributed to a lowered highest occupied molecular orbital (HOMO). Our group has reported pentafluorophenoxy-containing analogues of regioregular P3HT, which behave as surfactants at the bulk heterojunction interfaces. It was found that the addition of only a small amount of these materials yielded a 30% increase in power conversion efficiency (PCE) as compared to a P3HT:PCBM standard. In addition to solar cells, functionalized PTs play a pivotal role in designing chemoresistive sensors when used to wrap carbon nanotubes (CNTs). Using this scheme, customized, receptor-functionalized PTs were used to create selective detection schemes for chemical warfare agents and were able to distinguish between structural isomers of xylene.

Methods to prepare functionalized PTs generally integrate the side-chains or functional groups at the monomer stage. A clear advantage of this approach is that 100% of the thiophene repeating units can be reliably functionalized. However, this method is not universally applicable, and in particular, GRIM polymerization conditions are not compatible with many functional groups. As a result, postpolymerization modification can offer an alternative, efficient strategy to functionalize PTs. For example, current methods to modify PTs via postpolymerization modification include the GRIM polymerization of protected terminal alkyne or alkyl bromide thiophene monomers, which can be modified after polymerization through Cu-mediated Huisgen 1,3-dipolar cycloaddition or nucleophilic substitution, respectively. These approaches allow for the installation of functional groups which could not be employed in a GRIM polymerization; however, these examples still entailed preparation of specialized monomers.

Received: September 14, 2014
Revised: December 18, 2014
Published: December 31, 2014
A more attractive approach is the direct modification of commercially available regioregular P3HT. Previously, Holdcroft and co-workers have achieved efficient, direct modification of the 4-position of P3HT through electrophilic bromination with N-bromosuccinimide (NBS). The brominated P3HT (Br-P3HT) then served as a cross-coupling substrate to introduce functionality to the 4-position of P3HT26 via Suzuki–Miyaura, 27 Stille, 28 and Heck reactions.29 Others have extended these cross-coupling strategies to introduce fullerene derivatives,30,31 pyrene,32 perylene bisimide,33 and copolymers.34–36 Herein, we expand the utility of Br-P3HT and demonstrate that near-quantitative lithium–halogen exchange occurs at the 4-position and can be quenched with a variety of electrophiles to yield new 4-position functionalized P3HTs (Scheme 1). This methodology diversifies the portfolio of functionalized P3HTs with an efficient synthetic procedure.

Scheme 1. Postpolymerization Modification via Lithium–Bromine Exchange and Subsequent Quenching with Electrophiles

\[
\begin{align*}
\text{C}_{4}H_{13} & \quad \text{NBS} & \quad \text{BuLi} & \quad \text{Electrophile} \\
\text{R} & = \text{ketone, 2° alcohol, trimethylenesilane (TMS), F, N3, and triazole}
\end{align*}
\]

EXPERIMENTAL SECTION

Materials and Instruments. Chemicals were purchased from Aldrich, Alfa Aesar, and TCI America without further purification unless noted otherwise. Acetic acid and methanol were purchased from Macron Fine Chemicals. Methanol-d\textsubscript{4} (“D, 99.95%”) in ampules were purchased from Cambridge Isotope Laboratories, Inc. Butyroaldehyde and 4-methoxybenzaldehyde were distilled before use. Regioregular P3HT was purchased from Aldrich. All reactions were carried out under argon with standard Schlenk techniques. Anhydrous tetrahydrofuran (THF) was obtained from Sigma-Aldrich dry solvent bags and kept in a Schlenk flask with molecular sieves (3 Å). Difluorobenzocyclooctyne (20) was synthesized by the literature procedure with the use of tetrabutylammonium fluoride (TBAF), instead of CsF.37 All 1H and 19F NMR spectra were collected on a Bruker Avance-400 and data are reported in ppm. 1H NMR spectroscopy is referenced to solvent peaks, and 19F NMR spectroscopy is referenced to trifluorotoluene (δ = −62.72 ppm). The multiplicity is reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad, bs = broad singlet, and bm = broad multiplet. Coupling constants J are reported in Hz. Elemental analyses were carried out by Robertson Microlit Laboratories, Ledgewood, NJ (USA). UV–vis spectra were recorded on an Agilent Cary 4000 spectrometer at room temperature. The solutions were prepared in dichloromethane or chloroform with concentrations between 10−4 M and 10−6 M. Thin films were prepared on glass by spin-coating 3500 rpm for 30 s from a solution of functionalized P3HT in chlorobenzene (1 mg/mL, F-P3HT is not completely soluble in this concentration, and undissolved polymers are removed by filtration). Fluorescence measurements were performed at room temperature with a Horiba Jobin Yvon SPEX FluoroLog-3 fluorometer (Model FL-321, 450 W xenon lamp) using right-angle conformation. Infrared (IR) spectra were measured on a Thermo Scientific Nicolet 6700 Fourier transform infrared spectrometer using the attenuated total reflectance (ATR) mode on a germanium crystal. THF gel permeation chromatography (GPC) was performed (0.5 mg/mL) on an Agilent 1260 Infinity system, calibrated with polystyrene standards.

Cyclic voltammetry was carried out with an AUTOLAB PGSTAT 10 potentiostat (Eco Chemie) on a three electrode system: polymer film on indium tin oxide (ITO)-coated glass (1.2 cm × 1.2 cm) as a working electrode, Pt wire as a counter electrode, and Ag/AgCl as a reference electrode. Polymer films on ITO-coated glass were prepared by spin-coating a solution of PT in chloroform (2 mg/mL, F-P3HT was sonicated to dissolve it for about 1 h) with 2000 rpm for 30 s. The film was dried and annealed at 70 °C for 15 min. The area of 1.2 cm × 0.7 cm was immersed in the electrolyte (0.1 M tetraethylammonium hexafluorophosphate in anhydrous acetonitrile) during measurement. The ferrocene/ferrocenium redox couple was used as an internal standard.

Procedure for Br-P3HT (1). Br-P3HT was synthesized as previously reported.25 Briefly, to a stirring solution of commercial P3HT (300 mg, 1.80 mmol in terms of repeat unit) in chloroform (20 mL), NBS (386 mg, 2.16 mmol) was added portionwise. The reaction mixture was stirred for 12 h at room temperature. The temperature was elevated to 50 °C for 2 h, then the mixture was cooled and poured into a saturated NaHCO\textsubscript{3} solution (50 mL). The organic layer was washed with water five times and dried over MgSO\textsubscript{4}. The mixture was precipitated in methanol. The precipitate was isolated by filtration and dried overnight under vacuum at room temperature, resulting in a yellow solid (441.6 mg, 1.80 mmol in terms of repeat unit, 99% yield based on 100% bromination).

General Procedure for the Synthesis of the Functionalized P3HT (4–15). To a stirring solution of Br-P3HT (30 mg, 0.122 mmol in terms of repeat units) in THF (6 mL) at −78 °C, was added n- BuLi (0.612 mmol, 5 equiv, 1.6 M in hexane, 0.38 M) dropwise. After 15 min of stirring, an electrophile (1.22 mmol, 10 equiv) was added to the mixture. Stirring continues for another 15 min. The temperature was increased to room temperature, and the resulting mixture was stirred for 4 h. Methanol (50 mL) was added and stirring continued until precipitate was generated. The precipitated solution was filtered, and the polymer was dried overnight under vacuum at 50 °C.

Procedure for F-P3HT (16). To a stirring solution of Br-P3HT (30 mg, 0.122 mmol in terms of repeat units) in THF (6 mL) at −78 °C, was added n-BuLi (0.612 mmol, 5 equiv, 1.6 M in hexane, 0.38 M) dropwise. After 15 min of stirring, an electrophile (1.22 mmol, 10 equiv) was added to the mixture. The mixture was stirred for 2 h, at which point the temperature was increased to room temperature and the solution was further stirred for 20 h. Methanol (50 mL) was added to precipitate the polymer. F-P3HT (16) was collected by filtration, washed with methanol and acetone, and dried under vacuum at 50 °C overnight.

Procedure for Azido-P3HT (17). The procedure is the same as the general procedure until the quenching step (4 h stirring at room temperature). This reaction is quenched by glacial acetic acid (1.22 mmol, 10 equiv, 0.068 M) or hydrochloric acid (1.22 mmol, 10 equiv, 3 M, 0.4 M), and then the mixture was stirred for 30–60 min. Methanol (50 mL) was added and stirring continued until precipitate was generated. The precipitated solution was filtered, and the polymer was dried overnight under vacuum at 50 °C. Because of insolubility after precipitation, the crude mixture prior to methanol-induced precipitation was used for the next click reaction.

Procedure for Cu-Catalyzed Click Reaction (18). To the mixture of 17 containing acetic acid were added phenyl propargyl ether (12 equiv, 0.094 mL), DIMEA (50 equiv, 0.54 mL), and CuI (14 mg, 10 mol % of the acetylene). The mixture was heated at 50 °C and stirred for 42 h. Methanol was added to precipitate the polymer, and the polymer was collected by centrifugation (11k rd,30 10 min), washed with acetone:ethyl acetate (1:1), and dried under vacuum at 50 °C overnight.

Procedure for Cu-Free Click Reaction (19). The mixture of 17 containing HCl was neutralized with NaOH (aq., 10%), and difluorobenzocyclooctyne (20)31 (1.47 mmol, 12 equiv, 282 mg) in THF was added. The resulting mixture was stirred at room temperature overnight. The polymer was precipitated with methanol (50 mL), collected by filtration, washed with methanol, and dried overnight under vacuum at 50 °C.
Lithium–bromine exchange is an extensively utilized chemical transformation, and most aryl or vinyl bromides react with alkyllithium reagents to form new organolithiates. These aryl- and vinylolithium species are highly reactive intermediates and readily combine with electrophiles. This strategy is widely employed in small-molecule chemistry; however, its extension to polymer chemistry has been limited, most likely as a result of the difficulty of polyanion formation. Specifically, it is well-accepted that generating a second anion within the same molecule is much more difficult to form than the first. Extrapolating this to a polymer chain, the \((n + 1)^{th}\) anion should be more difficult to form than the \(n^{th}\) anion. To explore the limits of lithium–halogen exchange and its utility in polymer systems, we initiated a thorough analysis of the lithium–halogen exchange on Br–P3HT.

To test the efficiency of polyanion formation from Br–P3HT (1), we subjected 1 to varying amounts of n-butyllithium \((n\text{-BuLi})\), followed by quenching with excess methanol and examined the conversion back to P3HT (Scheme 2). We characterized the magnitude of the lithium–bromine exchange by comparing the NMR spectrum integration values of the thiophene 4-H (6.98 ppm, Figure 1) with the \(\alpha\)-methylene of the hexyl chain (2.81 ppm, Figure 1) in addition to analyzing the weight percent of bromine as determined by elemental analysis (EA). The results are summarized in Table 1 and the NMR spectra are shown in Figure 1, where \(x\) and \(y\) represent monomers containing hydrogen and bromine at the 4-position, respectively. Gratifyingly, our results indicated we were indeed able to achieve near-quantitative lithium–bromine exchange on P3HT. Standard small-molecule conditions for lithium–halogen exchange often employ 1.2 equiv of butyl lithium. Using analogous conditions, we found that 73% lithiation was observed (3a). Upon increasing the amount of n-BuLi (3b–3d), more than 95% lithium–bromine exchange was achieved. The EA data for 3a–3d also display analogous trends to the NMR spectra. From Table 1, it is evident that as the amount of n-BuLi is increased, the recovered yields also increase. This relationship appears to be the result of more efficient precipitation of the polymers from methanol due to the higher salt concentration (lithium salt) in the reaction mixture. The salt weakens the solvation of the polymer by interacting with THF and thus facilitates polymer aggregation. The dispersity of 3a–3d is increased during the reaction from the corresponding Br–P3HT starting polymer (26 kDa, \(M_w/M_n = 1.80\)) to 3a (15 kDa, \(M_w/M_n = 3.01\)), 3b (28 kDa, \(M_w/M_n = 9.43\)), 3c (41 kDa, \(M_w/M_n = 7.39\)), and 3d (24 kDa, \(M_w/M_n = 13.4\)). The GPC traces of these polymers (Supporting Information) show that new peaks at higher molecular weight portions (such as 100 kDa and 550 kDa) emerged, suggesting some oligomerization and/or cross-linking. The exact nature of these high molecular weight species has not been determined. Considering the above results, we choose to develop a new PT modification methodology using 5 equiv of n-BuLi.

Before proceeding with the introduction of electrophiles to the lithiated P3HT, we further investigated the origin of the 4-position proton in our methanol quenching experiments. In light of the high basicity of the multilithium intermediate 2, a

![Scheme 2. Analysis of the Lithium–Bromine Exchange](Image)

Figure 1. \(^1\)H NMR spectra of the polymers: (a) P3HT, (b) 1 (Br–P3HT), (c) 3c, and (d) 4. The sharp peak at 6.98 ppm from 4-position proton (■) enables the estimation of the Li–Br exchange by comparison to the peak at 2.81 ppm from \(\alpha\)-methylene (●) of the hexyl chain. For detailed integration values and peak locations, please refer to the Supporting Information.

| Table 1. Relationship between Equivalents of n-BuLi and Degree of Lithium–Bromine Exchange*
<table>
<thead>
<tr>
<th>entry</th>
<th>n-BuLi (equiv)</th>
<th>(x)</th>
<th>(y)</th>
<th>(%) yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>1.25</td>
<td>0.73</td>
<td>0.27</td>
<td>0.852</td>
</tr>
<tr>
<td>3b</td>
<td>2.5</td>
<td>0.92</td>
<td>0.08</td>
<td>0.978</td>
</tr>
<tr>
<td>3c</td>
<td>5</td>
<td>0.94</td>
<td>0.06</td>
<td>0.987</td>
</tr>
<tr>
<td>3d</td>
<td>10</td>
<td>>0.95</td>
<td><0.05</td>
<td>0.991</td>
</tr>
</tbody>
</table>

*%NMR indicates conversions determined by \(^1\)H NMR integration, and EA indicates conversions determined by elemental analysis.
Scheme 3. Scope of this Methodology: Ketone (5−11), Secondary Alcohol (12−14), TMS (15), F (16), and Azide (17) Functionalized P3HTs

“...The conversion determined by 1H NMR with trifluorotoluene as an internal standard in NMR solvent. EA showed 46% conversion (See Supporting Information). The conversion is slightly overestimated due to overlapped peaks in the aryl region of the 1H NMR spectra with CdCl₃. The conversion cannot be calculated with a single value due to the overlapped peaks of α-CH₃ of hexyl chain with Ar-Me. Slightly different reaction conditions are employed. Please see below and Supporting Information for detailed conditions. The conversion was not available due to the insolubility of the product.
introduction of fluorine atoms onto the 4-position was immediately evident by the broad singlet at −123.60 ppm in the 19F NMR spectrum (Supporting Information). The conversion was calculated by determining the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA. From these values, the amount of 4-position proton by 1H NMR spectroscopy and 4-position residual bromine by EA.
exchange on favorable, we observed nearly quantitative lithium generation of multiple reactive anions on one molecule is not P3HT. In contrast to the conventional belief that the lithium N3 to P3HT and Br−bromine exchange and quenching results in a strong azide peak at 2105 cm−1. Quenching with AcOH produced similar results. In both 18 and 19, complete disappearance of the azide peak was observed.

CONCLUSIONS

A variety of functionalized P3HTs were synthesized in a simple two-step approach—bromination of P3HT25 followed by lithium—bromine exchange and quenching—from commercial P3HT. In contrast to the conventional belief that the generation of multiple reactive anions on one molecule is not favorable, we observed nearly quantitative lithium—bromine exchange on ca. 30 kDa Br−P3HT (more than 100 thiophene repeat units). The multilithiated P3HT is highly reactive, yet stable enough to undergo the next reaction in situ with functional electrophiles, resulting in an array of modified P3HTs. We successfully prepared ketone-, 2° alcohol, TMS-, F−, and N−containing P3HTs, many of which could not be synthesized by direct GRIM polymerization. The optical spectra of F−P3HT in solution and thin films as well as cyclic voltammetry were investigated to infer the electronic properties, chain configuration, and solid state behavior in comparison to P3HT and Br−P3HT. Additionally, we demonstrated that N−P3HT could be further derivatized with alkyne using click chemistry. This novel, efficient methodology, and more generally the ability to generate polyanions through lithium−halogen exchange, will allow for the synthesis of many new functional polymers.

ASSOCIATED CONTENT

Supporting Information

Characterization of each polymer including used electrophiles, yields, absorption maxima, and emission maxima, control experiments with n-butyl bromide, cyclic voltammetry data, GPC traces, 1H NMR spectra, 19F NMR spectra, and IR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
* (T.M.S.) E-mail: tswager@mit.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

B.K. appreciates helpful discussions with Dr. Yanchuan Zhao. We thank Chelsea McConnell for preliminary work on the scope of this method. B.K. is grateful to Samsung Scholarship for graduate research support. E.M.S. was supported by a F32 Ruth L. Kirschstein National Research Service Award. This work was funded by grants to T.M.S. from the Institute of Soldier Nanotechnology and the NSF, Center for Energy Efficient Electronics, Award ECCS-0939514.

REFERENCES

Figure 3. (a) Click reactions with azido-P3HT (17) in the Cu-catalyzed (18) and strain-promoted Cu-free (19) conditions. (b) Comparison of IR of 17 (black), 18 (red), and 19 (blue). 17 was prepared by quenching with HCl and resulted in a strong azide peak at 2105 cm−1. Quenching with AcOH produced similar results. In both 18 and 19, complete disappearance of the azide peak was observed.

DOI: 10.1021/ma5019044
Macromolecules 2015, 48, 229−235
(23) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
(38) $r_{cf} = 1.1 \times 10^{-5} \times r \ (\text{cm}) \times \text{rpm}^2$, where r is the rotor radius.
(40) With 0.1 equivalent of NBS, 10% of repeat units on P3HT were brominated, and the resulting polymer underwent Li–Br exchange followed by quenching with tosyl azide to append a few percent of azide group on P3HT. This polymer was more soluble than 17 due to fewer azide groups on P3HT.