Nanolasers grown on silicon

Roger Chen, Thai-Truong D. Tran, Kar Wei Ng, Wai Son Ko, Linus C. Chuang, Forrest G. Sedgwick and Connie Chang-Hasnain*

The integration of optical interconnects with silicon-based electronics can address the growing limitations facing chip-scale data transport as microprocessors become progressively faster. However, until now, material lattice mismatch and incompatible growth temperatures have fundamentally limited monolithic integration of lasers onto silicon substrates. Here, we use a novel growth scheme to overcome this roadblock and directly grow on-chip InGaAs nanopillar lasers, demonstrating the potency of bottom-up nano-optoelectronic integration. Unique helically propagating cavity modes are used to strongly confine light within subwavelength nanopillars despite the low refractive index contrast between InGaAs and silicon. These modes therefore provide an avenue for engineering on-chip nanophotonic devices such as lasers. Nanopillar lasers are as-grown on silicon, offer tiny footprints and scalability, and are thus particularly suited to high-density optoelectronics. They may ultimately form the basis of future monolithic light sources needed to bridge the existing gap between photonic and electronic circuits.

Since the first laser demonstrated that stimulated emission processes in an optical medium can implement a powerful, coherent light source, the field of photonics has witnessed an explosion of applications in telecommunications, lighting, displays, medicine and optical physics, among others. The integration of photonic and electronic devices to combine the advantages of both has subsequently attracted great interest. In particular, the integration of optical interconnects onto silicon chips has become critical as a result of ongoing miniaturization of silicon logic elements having created a bottleneck in inter- and intra-chip communications. Some approaches towards creating on-chip light sources for optical interconnects have focused on engineering silicon and germanium for optical gain and stimulated Raman scattering. In other research, III–V lasers have been heterogeneously bonded onto silicon substrates. However, numerous challenges face these approaches. Wafer bonding has low yield because of a stringent surface flatness requirement down to the atomic scale, and group IV emitters must overcome an indirect bandgap that offers exceedingly inefficient radiation. Monolithic growth of high-performance III–V lasers on silicon therefore remains a ‘holy grail’ in the search for cost-effective, massively scalable and streamlined fabrication of on-chip light sources.

To date, the fundamental roadblock facing monolithic integration has been a large mismatch of the lattice constants and thermal expansion coefficients of III–V materials and silicon. Laser materials have previously been grown on silicon substrates, but the required high growth temperatures would be detrimental to existing silicon electronic devices. To overcome these barriers, we recently demonstrated the growth of single-crystal GaAs nanoneedles on silicon at 400 °C under conditions compatible with complementary metal-oxide-semiconductor (CMOS) technology. Based on this template, we have gone on to develop InGaAs/GaAs heterostructure nanopillar lasers that are monolithically integrated onto silicon after a single growth step. Because of their compatibility with silicon technology, nanopillar lasers can potentially take advantage of the capabilities of today’s massive silicon infrastructure to facilitate an ongoing paradigm shift in modern computing architecture towards optoelectronic circuitry.

We also show a novel helically propagating mode cavity that offers a unique feedback mechanism to enable on-chip laser oscillation. Whereas traditional Fabry–Perot modes are inhibited by the interface between InGaAs and silicon, helical modes can strongly localize light within nanopillars of even subwavelength dimensions without lossy plasmonic or metal–optic effects. These modes therefore exemplify how novel optical phenomena in nanostructures can be used for future on-chip nanophotonic devices.

Results

Nanopillar growth on silicon. The nanopillar-based laser is schematically depicted in Fig. 1a. Its cross-section reveals inner core–shell layers (see inset for a top view of the laser). The core contains the InGaAs active region, and the GaAs shell provides surface passivation. Most nanopillars have a slight 5° taper between opposite sidewall facets. The height and diameter of the nanopillars scale easily and controllably with growth time, despite the large lattice mismatch. Typical nanopillars have tiny footprints of only ~0.34 μm², enabling them to realize high-density silicon-based optoelectronics. Nanopillars display extremely well-faceted surface geometry, as shown by the scanning electron microscope (SEM) image in Fig. 1b. The top-view SEM image in Fig. 1c shows the hexagonal cross-section of the nanopillar, which results from its unique single-crystal wurtzite structure. As we will show later, the as-grown nanopillar structure provides a natural optical cavity supporting unique resonances that have not been observed before, to the best of our knowledge. Nanopillars do not therefore require additional top-down processing to form on-chip optical cavities. Instead, they provide a viable bottom-up approach towards integrating light sources and resonators onto a silicon chip.

Importantly, nanopillars have several critical advantages for optoelectronic integration onto silicon. They grow at the low temperature of 400 °C, which is drastically lower than typical III–V growth temperatures by 200–300 °C and is compatible with CMOS devices. Heterostructure nanopillar growth occurs spontaneously on a silicon substrate by metal–organic chemical vapour deposition (MOCVD) and is catalyst-free, avoiding the incorporation of metal particles that are poisonous to silicon CMOS devices.
Additionally, core–shell layering allows nanopillar laser diode structures to be grown on silicon20. (Detailed procedures are described in the Supplementary Information.) Low-temperature and catalyst-free growth allows nanopillars to be monolithically integrated with silicon electronics without compromising highly developed silicon transistor technology and CMOS process flows.

Laser oscillation on silicon. Room-temperature laser oscillation is achieved by optical excitation using a mode-locked Ti:sapphire laser (see Methods). At low pump levels, nanopillars emit broad spontaneous emission. With increasing excitation intensity, a cavity mode emerges, and laser oscillation is ultimately seen at \(\sim 950 \text{ nm} \), as shown in Fig. 2a. The inset shows the nanolaser light output power and emission spectral linewidth as functions of excitation (the former is referred to as the ‘light–light’ or ‘L–L curve’). Clear threshold behaviour is observed in the L–L curve, together with prominent clamping of the laser linewidth. A classic signature of lasing is observed from near-field images of nanopillar lasers. When pumped below threshold, a nanopillar only outputs a spot of spontaneous emission, as shown in Fig. 2b. Above threshold, clear speckle patterns due to the interference of highly coherent light become visible (Fig. 2c). Most lasers characterized show single-mode operation, although as many as three lasing modes have been seen from a single nanopillar. We note that growing a sufficiently thick GaAs cap (\(\sim 90 \text{ nm} \)) is key in suppressing surface recombination to enable room-temperature operation. Lasing on silicon at room temperature is a critical achievement, demonstrating the potential of nanopillar lasers for implementing practical optoelectronics beyond the research laboratory.

We performed additional experimental studies at 4 K to further characterize the nanopillar laser and extract various laser parameters. Figure 2d shows the L–L curve and the corresponding spectra below and above lasing threshold for a typical laser: a clear threshold is seen at a very low excitation intensity of \(\sim 22 \mu \text{W cm}^{-2} \). By constructing an analytical gain model using material parameters from the literature24, we analysed the spontaneous emission spectrum of the nanopillar and established a correlation between experimental pump levels and carrier density. Applying the gain model with classical rate equation analysis22,23, we fit the L–L curve in Fig. 2d to reveal a threshold gain and carrier density of \(\sim 1,400 \text{ cm}^{-1} \) and \(\sim 1 \times 10^{18} \text{ cm}^{-3} \), respectively (see Supplementary Information). We accordingly estimate a cavity quality (\(Q \)) factor of \(\sim 206 \) and a spontaneous emission factor of \(\beta \approx 0.01 \), where \(\beta \) measures the fraction of spontaneous emission coupled into the cavity mode of interest. This value is reasonable considering the laser’s small volume of \(6 \times 10^{-13} \text{ cm}^3 \) (ref. 24). We additionally measured a strong background suppression ratio of \(\sim 17–20 \text{ dB} \) from typical lasing spectra.

Helically propagating cavity modes. Despite minimal index contrast between the InGaAs nanopillar (\(n_i \approx 3.7 \)) and the silicon substrate it resides on (\(n_i \approx 3.6 \)), sufficient optical feedback or \(Q \) is attained for laser oscillation in our novel structures. Even non-negligible absorption by silicon at nanopillar laser wavelengths is overcome. Intuitively, helically propagating modes can have nearly total internal reflection at the nanopillar–silicon interface, because their wave vectors strike that boundary with grazing incidence at extremely shallow angles. Figure 3a illustrates this novel concept using a ray-optics interpretation. Alternatively, the interface between substrate and nanopillar can be thought of as introducing a strong cutoff for helically propagating modes. The strong feedback of helical modes was further confirmed by finite-difference time-domain (FDTD) calculations of untapered nanopillars. These helical nanopillar modes have strong azimuthal components, which result in transverse field profiles similar to those previously reported for hexagonal whispering gallery (WG) modes25–27, as shown in Fig. 3b. However, unlike traditional WG modes, helical nanopillar resonances have net propagation in the axial direction. This can be seen from the first- and third-order axial standing-wave patterns shown in Fig. 3c and d, respectively.

We can therefore define two mode numbers to describe these helically propagating modes. An azimuthal mode number \(m \) describes the transverse field pattern just as it does for WG modes, and an axial mode number \(n \) describes the order of the axial standing wave as for Fabry–Perot resonances. To be complete, a third mode number should account for higher-order radial modes, but we find that the subwavelength transverse dimensions of nanopillars limit access to only the lowest-order radial mode. Both transverse electric (TE) as well as transverse magnetic (TM) polarizations exist. Previous photoluminescence studies indicate that material gain is stronger for an electric field polarized perpendicular to the wurtzite nanopillar axis, suggesting TE modes may be preferred for lasing28. In this Article, we refer to specific resonances as either TE\textsubscript{max} or TM\textsubscript{max} for consistency. As might be expected, modes with distinct mode numbers resonate at distinct wavelengths.
suppression ratio.

The most important consequence of a helically propagating mode is that it allows high reflectivity at a dielectric interface with low index contrast. From Fig. 3c and d, it is evident that the cavity modes are remarkably well confined in the active material, despite the significant interface with silicon. Such strong confinement enables our resonators to lase without having to fabricate the pedestals that WG microdisk lasers typically require to preserve vertical optical confinement. In fact, the confinement is strong enough that even nanopillars with subwavelength dimensions on all sides achieve laser oscillation. An SEM image of such a subwavelength laser is shown in Fig. 3e. The lasing and spontaneous emission spectra for this laser at $T = 4$ K are shown in Supplementary Fig. S13. The physical volume of this laser is only $V \approx 0.2 \lambda_i^3$, where λ_i is the lasing wavelength in air. Subwavelength lasers have been successfully implemented on other substrates by the use of plasmonics29–31. In our case, a purely semiconductor cavity mode alone provides enough confinement for subwavelength lasing without metal-optic effects32,33. Avoiding metal losses is a critical advantage that should allow high-efficiency laser operation.

Engineering these helical modes by controlling the nanopillar dimensions, we can select the mode number to be used for laser oscillation and control the wavelength of nanopillar laser emission. Because nanopillar cavities scale with growth time from the nanoscale throughout the microscale without critical dimensions, we can easily grow nanopillars to resonate at any wavelength of choice. Experimentally, we have verified that nanopillars support $n > 1$ resonances by directly imaging emission from nanopillars of different lengths, as presented in Fig. 3f–h with corresponding SEM images. For these measurements, we used nanopillars that were grown at oblique angles with respect to the surface normal of the substrate, allowing us to image emission along the nanopillar axes. Axial standing-wave patterns can be clearly discerned, confirming net propagation of nanopillar cavity modes along the nanopillar axis. As nanopillar length decreases, higher-order axial modes are cut off, such that fewer axial maxima can be observed. nanopillars are held below threshold for these images to prevent speckle interference from obscuring the mode pattern. Traditional Fabry–Pérot modes cannot account for the patterns seen, because light leakage through the InGaAs–silicon interface is far too severe for such modes. Instead, we attribute the axial maxima to helically propagating modes of the nanopillar, which simulations have shown to be strongly supported despite even oblique junctions of low index contrast between nanopillars and substrate (see Supplementary Information).

We remark here that our experimental Q (≈ 206) falls well short of theoretical estimates (for example, $\approx 4,300$ for TM$_{61}$), probably because tapering in the nanopillar perturbs the mode. To investigate the effects of the sidewall taper, additional FDTD simulations have been performed for nanopillars on silicon with 5° angles between opposite sidewalls. It should be noted that although 5° is a well-represented average, the range of taper angles can be from $<3^\circ$ to $>7^\circ$. Figure 4 shows vertical field profiles for TM$_{61}$, TM$_{62}$ and TM$_{63}$ modes, revealing the rather pronounced effects of tapering. The modes are noticeably confined towards the base of the nanopillar. At a certain height, the reduced nanopillar radius cuts off the mode in the vertical direction and reflects it downwards. The taper also blueshifts helical resonances (for example, ≈ 37 nm blueshift for the TM$_{61}$ mode), because the transverse dimensions become effectively smaller. Additionally, the adiabatic reduction of nanopillar radius causes helical modes to become less resonant as they propagate upwards, resulting in increased light leakage.
through the cavity sidewalls. For TM$_{61}$, TM$_{62}$ and TM$_{63}$ modes, the Q factors are 319, 235 and 173, respectively. Although much smaller than the values of Q for straight nanopillars, these values agree extremely well with our experimental data, confirming that sidewall taper is the primary loss mechanism for our as-grown cavities. Engineering the taper angle thus offers an avenue to improve future laser performance. We briefly note that higher-order axial modes generally have lower quality factors. Physically, the stronger Fabry–Pérot characteristic of higher-order axial modes means that their effective longitudinal wave-vector components become stronger, causing larger penetration and loss into the substrate.

Wavelength control of laser emission. By varying the indium composition of nanopillars during growth, we can spectrally match the semiconductor gain to designed cavity resonances to maximize spontaneous emission coupling into the cavity modes (see Supplementary Information). In this current study, we vary indium composition from 12 to 20% to achieve wavelength control of on-chip nanolasers over a \sim50 nm range, as shown in Fig. 5. The flexibility of wavelength control may allow nanopillars to fulfill a myriad of laser applications throughout the near-infrared. For chip-scale silicon photonics applications, silicon-transparent laser light may be favourable to avoid absorption loss in silicon waveguides, although this is not required if transparent silica waveguides are used instead. In the latter scenario, low-cost high-performance silicon photodetectors may then be used to complete the optical link. Nonetheless, we expect to be able to push nanopillar laser emission beyond silicon transparency, which would also improve cavity Q by removing absorption loss into the substrate. Past nanopillar growth studies have already demonstrated silicon-transparent nanopillar photoluminescence, indicating that a fundamental limitation does not exist for longer wavelength lasers. The fact that we grow laser cavities using a bottom-up approach rather than top-down etching processes raises a couple of additional points of interest. First, single-crystal growth provides facets that are far smoother than etching can allow, thereby minimizing scattering loss. Additionally, the hexagonal structure of nanopillars is dictated by their hexagonal wurtzite crystal lattice. Thus, as-grown nanopillars have unprecedented symmetry, which prevents the polarization splitting of degenerate laser modes often seen in microdisks due to ellipticity. Instead, truly single-mode laser oscillation can be achieved.

Discussion

The scheme presented here for growing active nanophotonic components on silicon is promising for photonic integration with CMOS circuits. However, electrically pumped lasers are required for such applications. Although nanowire-based light-emitting diodes (LEDs) and lasers have been demonstrated, it remains...
Laser emission into waveguides. From simulations of the helical laser emission and out-of-plane propaga-
difficult to fabricate lasers and LEDs using as-grown nanostructures and conventional microfabrication techniques. The nanodisks discussed in this paper present significant advantages. Core–shell layering and doping capabilities greatly facilitate growth of p-i-n heterostructures and quantum wells in nanodisks. Using such structures, electrical injection of as-grown nanodisk LEDs on silicon has already been achieved. Notably, these devices were fabricated using standard contact lithography techniques because nanodisks are sizeable and robust. Future electrical contact schemes will account for preservation of nanodisk cavity modes to achieve electrically injected lasers on silicon.

Another critical aspect of silicon optoelectronics is coupling of laser emission into waveguides. From simulations of the helical cavity modes, we find that emission dominates in the in-plane radial direction (see Supplementary Information). Nanodisk lasers are thus compatible with the existing coupling schemes used for microdisks and ring resonators. Additionally, various schemes have already been developed to turn in-plane light propagation into surface normal emission and vice versa. Nanodisk lasers coupled to waveguides are thus promising for optical interconnects or any chip-scale device that requires an integrated light source.

Finally, note that modern CMOS electronics are fabricated on (100) silicon wafers. Although we presently use (111) silicon substrates to guarantee vertical alignment of nanopillars, this does not prevent nanopillar laser integration onto (100) silicon. (111) facets of a (100) silicon substrate can be exposed to grow nanopillars aligned at an angle of 54.7° with respect to the surface normal. We have shown that helical laser modes are still strongly supported, even for a larger 70° growth angle (see Supplementary Information).

In this Article, we demonstrate the first room-temperature III–V nanolaser grown on silicon with subwavelength volume. In doing so, we show that lattice mismatch is not a fundamental limit for monolithic integration of III–V photonic devices onto silicon, as is generally perceived. A bottom-up approach can provide an effective way of integrating nanophotonics with nanoelectronics. The ability to heavily populate an optically deficient silicon substrate with efficient III–V lasers has far-reaching implications for silicon photonics, particularly with regard to optical interconnects. With low-temperature nanopillar growth, the possibility exists for laser integration after electronics fabrication in CMOS foundries is complete. A new class of helically propagating modes implement our unique on-chip optical cavities, showing that optical phenomena in all-semiconductor nanostructures can be applied for practical on-chip nanophotonic devices. These modes may be taken advantage of for new designs of optical components such as photodetectors, modulators and solar cells. Meanwhile, future electrical operation of p-i-n nanopillar lasers on silicon promises for a powerful marriage between photonic and electronic circuits.

Figure 5 Wavelength control of nanopillar lasers by composition variation. Nanopillar lasers can be implemented over a broad range of wavelengths by properly tuning indium composition and nanopillar dimensions. Nanopillars are grown to target dimensions designed to achieve resonances at specified wavelengths. Indium composition of the InGaAs core is concurrently adjusted so that nanopillar gain and emission spectrally match the resonant wavelength for laser oscillation. The spectra shown are offset for clarity. In this study, a change in indium composition from ~12–20% provides a 50 nm control in the output laser wavelength.

Methods

Nanopillar growth on silicon. To grow the InGaAs nanopillars, a silicon substrate was first cleaned with acetone, methanol and water (3 min for each step). The substrate was then deoxidized by buffered oxide etch for 3 min, and the surface mechanically roughened. Growth was subsequently carried out in an EMOORE D75 MOCVD reactor. Tertiarybutylarsine (TBA) was introduced to the reactor at temperatures higher than 200 °C. Before growth, in situ annealing at 600 °C was performed for 3 min. After annealing, the temperature was reduced to the growth temperature (400 °C in this work) in 3 min, followed by 2 min of temperature stabilization. Triethylgallium (TEGa) and trimethylindium (TMIn) were then introduced to the reactor to begin the 60 min InGaAs core growth. TMIn mole fractions were kept constant at 9.86 × 10⁻⁵, 1.38 × 10⁻⁵ and 1.73 × 10⁻⁵ to achieve 12, 15, and 20% indium compositions, respectively. The TEGA mole fraction is held at 1.12 × 10⁻⁵. All sources used a 12 l min⁻¹ hydrogen carrier gas flow. The TBA mole fraction was 5.42 × 10⁻⁵, giving a ν/π ratio of ~43. A GaAs shell was then grown around the InGaAs core with the same TEGa and TBA mole fractions used for core growth, with a ν/π ratio of 48. Room-temperature lasers use 90 nm shells with 20% indium cores, and low-temperature lasers typically have 30 nm shells and 15% indium cores. Nanopillar growth was vertically aligned to the (111) silicon substrate and was anisotropic with faster growth rates along the [0001] wurtzite c-axis. Nanodisk dimensions were linearly scalable with time, with no critical dimensions observed.

Lasing experiments. To achieve nanopillar laser oscillation, 120 fs pump pulses from a mode-locked Ti:sapphire laser (Coherent Mira, λ = 750 nm, repetition rate 76 MHz) were delivered to the sample by a x100, 0.7 numerical aperture (NA) objective (Mitutoyo NIR HR) at a temperature that was held between 4 K and 293 K by a continuous-flow liquid-helium cryostat (Oxford Instruments Hi-Res II). The pump spot size was slightly defocused to a diameter of ~6 μm. Nanopillar emission was collected by the same objective and relayed to a spectrometer and LN₂-cooled silicon charge-coupled device (Princeton Instruments SP2750 and Spec-10). Filters were used in all experiments to prevent pump light from reaching any detectors or cameras.

Received 26 September 2010; accepted 17 December 2010; published online 6 February 2011

References

Acknowledgements
This work was supported by the Defense Advanced Research Projects Agency (DARPA) University Photonics Research (UPR) Award HR0011-04-1-0040. Microelectronics Advanced Research Corp (MARCO) Interconnect Focus Center (IFC) and the Department of Defense (DOD) National Security Science and Engineering Faculty Fellowship. C.C.H. acknowledges support from the Chang Jiang Scholar Endowed Chair Professorship at Tsinghua University, China, and the Li K. Shing Foundation Women in Science Research Grants. R.C. acknowledges support from a National Defense Science and Engineering Graduate Fellowship. The authors thank Cun-Zheng Ning and E.K. Lau for fruitful discussions.

Author contributions

Additional information
The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturephotonics. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions.

Correspondence and requests for materials should be addressed to C.C.H.