

UNIVERSITY OF CALIFORNIA

Abstract

- A light field microscope is capable of capturing 3D information within a single shot, but it loses lateral resolution. [1]
- A combination of a fluorescence microscope with a diffuser is a proposed solution with the goal of obtaining better 3D resolution than a light field microscope equipped with a microlens array. [2]
- To demonstrate this idea, Zemax, Python, and Matlab are combined to compare the simulation results of different diffusers and microlens arrays.
- With this research, fluorescence beads are investigated, then experiments on living organisms, such as zebrafish are conducted.
- The goal is to eventually utilize this technique in improving the diagnosis and treatment of human diseases

Why Fluorescence?

Figure 1: The excited electrons jump from level 2 to level 3. The higher the electron goes more energy is needed. Later, the electrons on level 3 loses photons of energy and reverts back to its original ground state. [3]

- Fluorescent materials absorb light and UV radiation (i.e. x-rays, UV light)
- Emits wavelength than the originally one.
- A longer wavelength causes less scattering, allowing penetration inside the brain.

Comparison using Zemax

Software to replicate a live scenario optical design simulation

Diffuser – Random distribution of concave and convex regions Micro Lens Array – Multiple small lenses

Fluorescence Microscope with a Diffuser

Fluorescence Light Field Microscope (equipped with a micro lens array)

Shan Rafique¹, Fanglin Linda Liu², Laura Waller, Ph.D.²

¹San Joaquin Delta College

² Department of Electrical Engineering and Computer Science, University Of California, Berkeley

2018 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Image

Contact Information Shan Rafique shanRafique98@gmail.com (209) 224-1960

More than 1 point source = Blur

Support Information This work was funded by **National Science Foundation** Award ECCS-0939514

-	I	•		•	1	-			1	=		-	
-													
-		•				-							
-		•	•	•		-	•	•				•	
•		•	•	•		-	•	•		-	•	•	
_													
		•				-							
-		•				-							
•		•	•	•		-	•	•			٠	•	
-		•	•	•		-	•	•		•		•	
_													
		•				-							
-						-							
-						-	•					•	
7						-	-					•	

From the above comparison, we conclude that using a diffuser relieves the field of view constraint on the optical system. In the situation of having a huge field of view the diffuser would give us a better reconstruction than a microlens array. Thus, concluding that a microlens array would work best for this instant.

I would like to acknowledge my mentor Fanglin Linda Liu, my advisor Laura Waller and everybody in my lab. I would also like to acknowledge Kimberley, Lea and all my TTE peers.

Results

Diffuser Result

Sensor Data

Microlens Array Results

Conclusion

References

[1] Pégard, Nicolas C., et al. "Compressive Light-Field Microscopy for 3D Neural Activity Recording." Captcha, Optical Society of America, 12 May 2016, www.osapublishing.org/optica/abstract.cfm?uri=optica-3-5-517.

[2] Antipa, Nick, et al. "DiffuserCam: Lensless Single-Exposure 3D Imaging." Captcha, Optical Society of America, 22 Dec. 2017, www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1.

[3] VanCleave, Janice. "Fluorescence vs. Phosphorescence." VanCleave's Science Fun, 13 Mar. 2012, scienceprojectideasforkids.com/2011/fluorescence-vs-phosphorescence/

[4] "Optical Diffusers." 532 Nm Diode-Pumped Solid State (DPSS) Lasers, www.thorlabs.com/navigation.cfm?guide_id=17

[5] "New Nano-Imprinting Technology to Create Custom Micro-Lens Arrays." *MicroLens* Arrays, www.planetechn.com/Lightguides/Custom_MicroLens_Arrays.html.

Acknowledgements