2019 NSF STC Virtual Site Visit February 8, 2019

Theme III: Nanophotonics For Energy-Efficient Communications

Theme Leader: Ming C. Wu

A Massachusetts

STANFORD UNIVERSITY

CALIFORNIA COMMUNITY COLLEGES CHANCELLOR'S OFFICE

A Science & Technology Center

Current Theme Projects & Pl's

Optical antenna-enhanced nanoLED

Electrical injection III-V antenna-LEDs
 [Wu, Yablonovitch, UCB; Kim, MIT]

- Monolayer TMDC antenna-LEDs
 [Wu, Javey, Yablonovitch, UCB]
- Quantum dot antenna-LED
 [Wu, Bartl, UCB; Bulovic, MIT]

Link modeling and system analysis [Stojanovic, UCB]

Team Members

- > Theme III inter-institutional postdoc
 - Seth Fortuna
- Graduate Students:
 - Matin Amani, Nicolas Andrade, Kevin Han, Sean Hooten, Jonas Kapraun, Shiekh Uddin, George Zhang (UCB)
- > Undergrad:
 - Joy Cho (UCB)
- > Postdocs:
 - Der-hsien Lien, Kyungmok Kwon
- > Alum
 - Sujay Desai (Intel), Peida Zhao (Lam), Chris Heidelberger (MIT-Lincoln Lab), Indrasen Bhattacharya (KLA-Tencor), Kevin Messer (Magic Leap), Christopher Keraly (PARC), Ryan Going (Infinera), Michael Eggleston (Bell Labs), Wilson Ko (OURS), Yue Lu (DiDi), Geun Ho Anh (PhD at Stanford)

for Energy Efficient

Theme Overview

 Main goal: Dramatically improve the interconnect energy efficiency to 20 aJ/bit @ 20 photons/bit (Current state of the art: 100s fJ/bit @ 10,000 ph/bit)

Center for Energy Efficie

Electronics Science

Progress of Antenna LED under E³S

Electrically-injected III-V antenna-LED

Antenna-enhanced electroluminescence

Controlling non-radiative recombination at surface

Paae 8

Electronics Science

Center for Energy Eff

Milestone achieved: Clear antenna enhancement observed with time-resolved measurement

Center for Energy Efficient Electronics Science

Electronics Science

Electrical Injection LED with Monolayer WSe₂ Emitter

Kevin Han

- Similar to back-gated field effect transistor structure
- > Lateral p-n junction with electrostatic doping

A Science & Technology Center

Center for Energy Efficient Electronics Science

First Reliable LED Operation in Ambient

- Under DC bias, current and emission decay quickly in ambient conditions
- Pulsing greatly stabilizes light emission!

15

First Electrical Injection Antenna LED in Monolayer TMDC

Nanosquare antenna array

Top view

Major Accomplishments

- First temporal measurement of III-V antenna-LED
 - **50** ps spontaneous emission lifetime measured at 77K
 - **Compared with 1.6 ns without antenna**
- Electrical injection antenna LED with monolayer TMDC (WSe₂) emitter
 - Demonstrated first reliable LED operation in ambient condition
 - **11x enhancement demonstrated with optical antenna**
- Plan for next period
 - **III-V** antenna-LED with p-doped emitter (for even faster response)
 - **Experimental demonstration of waveguide coupling**
 - Increase antenna enhancement in TMDC antenna-LED

