Stritch Research Update

UTEP TEAM:

David Zubia

Aldo Vidana

Mariana Martinez

Raquel Zubia COLLABORATORS:

UCB

UCB

Dr. Tsu-Jae King Liu

UACJ-Mexico

Stritch Output Characteristic

Swing_{Stritch} (17mV/dec) < Swing_{CMOS} (60 mV/dec)

Page 2

Stritch Output Characteristic

- > What gives rise to steep output?
- How can steep output be used?

CMOS: $\sigma_{CMOS}/\sigma_{CMOS_O} = \exp(V_{GS}/kT)$

Stritch output is steeper than CMOS when:

$$\left. \frac{\partial E_g}{\partial \varepsilon} \right| \varepsilon(V_{GS})/2 > 1$$

MEMS Actuation Sensitivity

$$F_E = F_{CAN} + F_{TMD} + F_{VW_2} - F_{VW_1}$$

$$\frac{\epsilon_o A V_{Gs}^2}{2x_0^2 (1-\varepsilon)^2} = k_{CAN} x_o \varepsilon + k_{TMD} x_o \varepsilon + \frac{HA}{6\pi x_o^3 (1+\varepsilon)^3} - \frac{HA}{6\pi x_0^3 (1-\varepsilon)^3}$$

> F_{VW1} aids F_E to strain TMD when x_o is small

> F_{VW1} increases actuation sensitivity $\left(\frac{\Delta \varepsilon}{\Delta V_{GS}}\right)$

Page 4

Stritch Transistor

A Science & Technology Center

I-V Characteristic

- > Similar to MOSFET in linear region
- > However slope increases exponentially with v_{GS}

Stritch Small Signal Model

A Science & Technology Center

Complementary Logic Configuration

- > Electrostatic force is ambipolar
 - Allows inverting and noninverting circuitry

DC Bias Increases Gain

UTEP Comb-Drive Design

A Science & Technology Center

Lateral vs Vertical Actuation

A Science & Technology Center

MEATERAL ACTUATION

Electronics Science

3000X increase in conductivity in strained MoS₂

A Science & Technology Center

Optical measurements after straining

TaS₂-layered system with first-order charge density wave (CDW) phase transitions

DOI: 10.1126/sciadv.1500606

Phase transition temperature shift in strained TaS₂

