2018 E³S Annual Retreat University of California, Berkeley, September 20-21

Surface Molecular Coating for Adhesion Minimization in NEM Switches

Sara Fathipour¹, Sergio Almeida Loya², Benjamin Osoba², Alice Ye², Urmita Sikder²,

Farnaz Niroui³, Tsu-Jae King Liu² and Junqiao Wu¹

¹Department of Materials Science and Engineering, ²Department of Electrical Engineering and Computer Sciences, ³Department of chemistry, University of California, Berkeley, CA, USA

Massachusetts Institute of Technology STANFORD UNIVERSITY

NTERNATIONAL

CALIFORNIA COMMUNITY COLLEGES CHANCELLOR'S OFFICE

> Center for Energy Efficient Electronics Science

Zero OFF – state current , high ON state conductance and abrupt switching

2018 NSF Site Visit

Page 2

Hysteresis in *I-V* characteristics of a NEM relay

Using self-assembled molecules to reduce stiction (Prior work)

Schematic of a self assembled molecules

perfluorodecyltriethoxysilane (PFDTES)

- PFDTES Deposition in gas phase after the release step in a desiccator
- Use of PFDTES : Reduces hysteresis, but it deteriorates subthreshold swing

2018 E³S Annual Retreat

Summarizing prior work

Motivation for the current work W W **Pro: Reduce** + + + adhesion Longer chain **Previous** work: **Con: Degrade** conduction W W W W **Better: Reduce** adhesion Current **Branched** work: **Better: Not** degrade conduction W W substantially A Science & Technology Center Center for Energy Efficient

Electronics Science

Self assemble molecule used in this work

Perfluoro(2,3-dimethylbutan-2-ol)

Perfluro has ~24 F atoms/nm vs. ~10 F atoms/nm in PFOTES

Material characterization:

- XPS
- Adhesive force

measurement by AFM

Growth Procedure:

- Vapor-phase growth in desiccator
- Pressure: Low vacuum (1 Torr)
- Room temperature
- Time: 14 hours
- Precursor: 250 mg of SAM

A Science & Technology Center

Comparison of adhesion energy with the previous coating

 Adhesion energy between Perfluro– SiO₂ is slightly smaller than the adhesion energy between PFDTES-SiO₂ and PFOTES-SiO₂.

Transfer characteristics without body bias

Reduction in hysteresis with no substantial change in switching slope (SS).

Perfluro coating effect on hysteresis voltage

A Science & Technology Center

Center for Energy Efficient Electronics Science

Perfluoro coating effect on switching slope

- Switching slope increased after perfluoro coating.
 - Average of SS before coating 2.4 mV/dec
 - Average of SS after coating 5.8 mV/dec

11/1/2018

A Science & Technology Center

Page 12 Center for Energy Efficient Electronics Science

Perfluoro coating effect on switching slope

- Switching slope decreased after perfluoro coating.
 - Average of SS before coating 32.9 mV/dec

11/1/2018

A Science & Technology Center

Average of SS after coating 15.5 mV/dec

Page 13 Center for Energy Efficient Electronics Science

Future work

Exploring different kind of molecules with branched fluorinated back bone or with different head groups as anti-stiction coating.

Material and electrical characterization of such molecules will be done.

Appendix

NEM Relay Equations

Non-Pull in Mode

$$V_{\rm ON} = \sqrt{\frac{2k_{\rm eff}g_{\rm CONT}(g_{\rm ACT} - g_{\rm CONT})^2}{\varepsilon A_{\rm ACT}}}$$
$$V_{\rm RL} = \sqrt{\frac{2(k_{\rm eff}g_{\rm CONT} - F_{\rm adh})(g_{\rm ACT} - g_{\rm CONT})^2}{\varepsilon A_{\rm ACT}}}$$
$$V_{\rm H} = V_{\rm ON} - V_{\rm RL} \approx \frac{F_{\rm adh}(g_{\rm ACT} - g_{\rm CONT})}{\sqrt{2\varepsilon A_{\rm ACT}k_{\rm eff}g_{\rm CONT}}}$$

Forces in a NEM relay

Density

Particle-Particle interaction coefficient

Adhesive force:

 $F_{ad} = \frac{AS}{g^3}$

A is Hamaker constant $A=\pi^2 imes C imes
ho_1 imes
ho_2$

Electrostatic force:

$$F_{es} = Q\mathbb{E} = S\varepsilon V^2/g^2$$

Spring force:

 $F_s = -kx$

2018 NSF Site Visit

Zo Zo

Self-assembled Molecular (SAM) Coating

Self-assembled Molecular (SAM) Coating

Silane functional groups for molecular self-assembly.

 H_3C

 H_3

1H,1H,2H,2H-perflurodecyltriethoxysilane**PFDTES**Length ~ 1.5 nm

Chemistry of Relay Coating

Vapor-phase SAM growth in a low vacuum environment.

CH₂CH₂(CF₂)₇CF₃

 $(CF_2) = n = 7$

Center for Energy Efficient Electronics Science

Adhesive force measurement with AFM

After adhesive force is extracted from AFM measurement, adhesion energy can be calculated using the following formula (the roughness of the surface is ignored):

$$W_{Ad.} = \frac{F_{Ad.}}{2\pi R_{tip}}$$

 R_{tip} is the tip radius

 For this measurement micro spherical tip should be used instead of a conventional sharp tip, to have more contact area with the surface.

Center for Energy Efficier

Electronics Science

R

11/1/2018 A Science & Technology Center

Using SAMs as anti-stiction coating (Prior work)

Using SAMs as anti-stiction coating (Current work)

Self-assembled molecules as anti-stiction coating

A Science & Technology Center

Center for Energy Efficient Electronics Science

Measured I-V Characteristics

 Coating enables lower V_{DD} but at a tradeoff of lower I_{ON}/I_{OFF} ratio (higher effective R_{ON})

A Science & Technology Center

Page 27 Center for Energy Efficient **Electronics Science**

Comparison of adhesive force between SiO2 AFM tip and different bulk 2D materials

A Science & Technology Center

Center for Energy Efficient