Theme III: Progress on Antenna-Enhanced LEDs

Seth A. Fortuna, Christopher Heidelberger, Nicolas Andrade, Kevin Han, Eugene A. Fitzgerald, Eli Yablonovitch, Ming C. Wu

Outline

- > Review of electrically-injected III-V antenna-LED
- > Can the III-V antenna-LED ever be efficient?
 - Controlling surface recombination velocity
 - □ Novel technique for cleaning III-V surface
- > Progress in doping active region

- Directional light emission
- Thermal heat-sink

Engineering the antenna mode

PL intensity (norm.)

Page 5

Spontaneous emission enhancement measurement

> Antenna enhancement directly increases quantum efficiency

Device is fast but not yet efficient

Can radiative recombination ever exceed non-radiative recombination?

$$I_{tot} = AN + BN^{2} + CN^{3}$$

$$I_{rad} = Vol. \times F \times B_0 \times n_i^2 e^{qV/k_BT}$$
$$I_{nr} = Area \times v_s \times n_i e^{qV/2k_BT}$$

To increase efficiency:

(1) Minimize surface recombination velocity (v_s)

- (2) Maximize carrier density
- (3) Maximize antenna enhancement (F)

Can radiative recombination ever exceed non-radiative recombination? <u>YES</u>

Center for Energy Efficient Electronics Science

Page 10

Process induced surface damage

A Science & Technology Center

Before device processing: $v_s \cong 3 \times 10^4 \text{ cm/s}$

After device processing: $v_s > 10^5 \text{ cm/s}$

Surface needs to be protected during fabrication!

Electronics Science

10/30/2018 A Science & Technology Center

Monitoring surface recombination velocity throughout antenna-LED fabrication Dry etch ridge 4×10¹⁰ Active nn_{ea/} SF6 plasma 3×10¹⁰ p-substrate (2) Deposit sacrificial Al₂O₃ 0 (expose to plasma, anneal) Active Thick sacrificial Al₂O₃ p-substrate **10**¹⁰ 0 2×10^5 4×10^5 6×10^5 8×10^5 10⁶ d^{-1} (cm⁻¹) Page 14 10/30/2018

A Science & Technology Center

Center for Energy Efficient Electronics Science

Sacrificial Al₂O₃ process protects and cleans III-V surface

Low-temperature (77K) time-resolved photoluminescence measurement

Increased modulation speed with doped active region

Center for Energy Efficient Electronics Science

p-doping III-V materials in MOCVD

Zinc (precursor: DEZn)

- Most common
- High growth quality
- High diffusion coefficient

Carbon (precursor: CBrCl₃,CCl₄)

- High doping (>10¹⁹ cm⁻³) is possible
- Low diffusion coefficient
- Amphoteric
 (both p and n-type dopant)
- Low growth temperature

High carbon p-type doping of InGaAs ($N_A = 10^{19} \text{ cm}^{-3}$)

Page 20 Center for Energy Efficient Electronics Science

Summary

- > High efficiency antenna-LED is possible despite high III-V surface recombination velocity.
- Developed a technique to protect and clean the III-V surface using sacrificial Al₂O₃ layer.
- > Demonstrated high carbon p-type doping of InGaAs (10^{19} cm⁻³).

