III-V and Group IV Epitaxy for Low Energy Optoelectronics

Christopher Heidelberger¹, Seth Fortuna², Ming Wu², Eugene A. Fitzgerald¹

¹Department of Materials Science and Engineering, Massachusetts Institute of Technology

²Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

September, 2017

Outline

- > Materials for optical link
- HBT integration for high performance communication
- >Likely application for these technologies

E3S Seminar

Active region p-doping analysis from UC Berkeley

Growth of undoped LED structure

LED structure schematic:

XTEM

HT = 200 kV, (110) on pole

E3S Seminar

Luminescence of undoped LED structure

PL of blanket film

Quantum efficiency (large-area LEDs, UC Berkeley)

Electronics Science

A Science & Technology Center

LED structure with Zn p-type doping undoped active PL of Blanket Films p+ active region (Zn doping ~ 5 x 10¹⁸): 1.4 region: undoped x100 ¹⁸ cm ⁻³ Zn doping 1.2 5 x 10 InGaAs contact 1 InP contact 0.8 Intensity (arb.) InGaAs/InGaAsP 0.6 MQW 0.4 0.2 InP contact 50 nm 50 nm 1450 1500 1550 1600 1650 λ (nm) **DIC Image** InGaAs/InGaAsP MQW 10 nm poor EL and IV characteristics for fabricated LED 200 µm Page 6 4/13/2017 E3S Seminar

💮 A Science & Technology Center

Page 6 Center for Energy Efficient Electronics Science

Lattice matched growth

Post-growth N₂ anneal: effect on PL intensity and lifetime

A Science & Technology Center

Center for Energy Efficient Electronics Science

InGaAs LED structures: conclusions

- Demonstrated undoped InGaAs/InGaAsP LED structure with good morphology and high quantum efficiency
- Grew C-doped InGaAs with p > 1 x 10¹⁹ cm⁻³ and recombination limited by Auger recombination
- Future work
 - Grow InGaAsP cladding layers at similar growth conditions as C-doped InGaAs
 - Grow and characterize InGaAs/InGaAsP LED structure with high p-type doping
 - Fabricate and test antenna-enhanced LED structure with heavilydoped active region (UC Berkeley)

E3S Seminar

GaAsP/InGaP HBT on Si

Center for Energy Efficient Electronics Science

Center for Energy Efficien **Electronics Science**

Experimental loop

Iterative approach to improved defect density

C. Heidelberger and E. Fitzgerald, J. Appl. Phys., under review

A Science & Technology Center

"Current Gain Map"

- combined models for threading and misfit dislocations
- misfit dislocations have pronounced effect on current gain, even at low densities

Center for Energy Efficier

Electronics Science

A Science & Technology Center

Applications/Market: Is Computing a Target Market?

- > 28nm likely to be 'last profitable node' for non-monopolistic market participants?
 - **De-integration occurring for performance and market reasons**
 - Computing cores will be mature for a decade or more
 - Data center 'farms' or even 'cities'
 - Key necessary innovations obscured by monopolistic corporate structure
 - University research likely irrelevant to key problems without an informing paradigm
 - Communication and power management take front-seat
 - Within-data-center more important for silicon ICs because of market size
 - i.e. telecom thinking must leave silicon photonics (i.e. = telecom photonics)
- What to do in next decade or two?
 - Disruptive* path suggests key silicon technology (with new added value in materials) to appear in communication, lighting, and power management ICs; new era of ASICs
 - Nothing to do with data centers, computing, etc. initially
 - Grow in other markets for decades, then spill back into computing
 - Real 5G wireless
 - Visible integrated optoelectronics
 - Old silicon nodes (and 200mm) are playground and commercialization for innovation

*Actual Christensen definition, not Valley term

