Sub-50 mV Nano-electromechanical (NEM) Switch Devices

Bivas Saha, Benjamin Osoba, Tsu-Jae King Liu, and Junqiao Wu Department of Materials Science and Engineering and Department of Electrical and Computer Engineering University of California, Berkeley. California, 94720 US. bsaha@berkeley.edu

E³S Annual Retreat, September 7th, 2017

Nano-electromechanical (NEM) Relays

OFF State

- Source-to-Drain Current (A) V_{RL} V_{PI} I_{OFF} Gate Voltage (V)
- Abrupt Switching.
 High ON-state Conductance.

ON State

- □ Large ON/OFF Current Ratio.
- Low Operating Voltage and Switching Energy.
- Speed, Reliability, Endurance and Cost.

Body-Biased Relay Structure & Operation

Low-Voltage Operation via Body-Biasing 10^{-4} Body-Voltage (V_B)= 0 V 10^{-4} Body-Voltage (V_B)= -12.6 V

Operating voltage (V_{DD}) can be lowered with body-biasing to be as low as the hysteresis voltage (V_H).

I V_{H} is limited by adhesive force (F_{Ad}), decreasing with $|V_{B}|$

e.g. V_{H, VB = 0 V} ≈ (300-400) mV ; V_{H, VB = -12.6 V} ≈ 100 mV

How to Further Reduce V_H (beyond 100 mV?)

Adhesion Energy $\sigma_A = Surface Energy$

 $W_{Ad.} = \sigma_A + \sigma_B - \gamma_{AB}$ γ_{AB}^{-} Interface Energy

For A=B **Goal:** lower the surface energy, while keeping the $W_{Ad.} \sim 2\sigma_A$ electrodes as good electrical conductors.

Self-assembled Molecular (SAM) Coating

Silane functional group for molecular self-assembly.

1H,1H,2H,2H-perflurodecyltriethoxysilane**PFDTES**Length ~ 1.5 nm

n of $(CF_2) = 7$

Vapor phase growth of molecule on functional relay surfaces.

Adhesive force values are stable (nearly constant) over 1000 operating cycles (not shown here).

Effects of SAM Coating on NEM Performance

- ❑ Hysteresis voltage reduced from 100 mV (uncoated) to 16 mV (*n*=7) and 19 mV (*n*=5).
- Gate actuation voltage reduced to 60 mV and 80 mV, respectively, with 8 orders of magnitude I_{ON}/I_{OFF}. (further reduction of gate actuation voltage by 20 mV is possible).
- Actuation gate voltage may also be reduced by allowing a lower current on/off ratio.
- Molecules with n < 5 do not reduce hysteresis voltage, hence do not enable low voltage operation.

Effects of SAM Coating on NEM Performance

- Molecular coating reduces hysteresis voltage by ~10×.
 Actuation gate voltage reduced by ~2×.
 - ❑ Full benefit of the hysteresis voltage reduction cannot be leveraged due to the increase in sub-threshold swing.
- Molecular coating also reduces random variations in V_{PI}, V_{RL} and V_B, beneficial for voltage scaling. (Poster: Benjamin Osoba)

Three Types of I-V Characteristics

How Current Flows? (Hypothesis)

Case I: At $V_B \cong |V_{RL}|$, molecule-molecule gap ~2-3 nm.

Conduction Mechanism: Direct metal-metal electrical contact.

Case II: At $V_B \cong |V_{RL}|$, molecule-molecule gap ~2-3 nm. (Modeling Urmita Sikder)

Conduction Mechanism: Tunneling along with thickness modulation.

Case III: At $V_B \cong |V_{RL}|$, molecule-molecule gap ~0 nm.

Conduction Mechanism: Tunneling along with thickness modulation.

Center for Energy Efficient Electronics Science

Where are we and how to move forward?

Fundamental (theoretical and/or modeling) analysis on -

- Is there any fundamental physical limit on how small adhesion energy can be?
- What is the optimal structure of an molecule for it to be an antiadhesion coating?
- Can an anti-adhesive coating molecule be also electrically conductive?

Ideal: Conductive Molecule that is also Anti-adhesive.

for Energy Efficient

Conclusion

- Sub-50 mV Nano-electromechanical Relay Switch Devices Demonstrated.
- Conjugation of chemistry, physics, materials science and device research promises a new era in NEM switch technology.

Graduate Students/postdocs.

- Sergio Almeida Loya.
- Urmita Sikder.
- Alice Ye.
- Farnaz Niroui.
- Chung Qian.

Undergraduate Students

- □ Jane Edgington.
- □ Liam Dougherty.
- Jatin Patil.
- Laura Brandt.
- Don Rollings.
- Steven Chan.

Appendix

Vision for the Future

Emergence of Ambient Intelligence

Sense/monitor, communicate and react to environment

Center for Energy Efficien

Electronics Science

Ultra-low-Power and Robust Technology is Required!

The Voltage Matching Crisis at Nanoscale

E. Yablonovitch EE 290B (UCB)

Center for Energy Efficier

Electronics Science

The Next Switch: Why CMOS is Reaching its Limit

Limitations of CMOS Technology

- Boltzmann factor (60 mV per decade subthreshold swing limit.)
- Off-State leakage current.
- Device electrostatic properties degrades when channel length is shortened.
- In some specific applications (e.g. inside a nuclear reactor) Si-CMOS does not work.

$$I_{ds} \propto n_s \propto e^{qV_g}/_{\eta KT}$$

$$S\left(\frac{mv}{decade}\right) = \eta . 60 \text{ mV}.\frac{T}{300K}$$

Power consumption \propto (Voltage)²

Criteria for The New Switch

1. Steepness (or sensitivity)

Switches only with a few-millivolts. 60 mV/decade 1 mV/decade.

2. ON/OFF ratio

10⁶ : 1

3. Current Density or Conductance Density (for miniaturization)
Spec at 1 Volt: 1 mAmp/micron

A Brief History of Relays

Joseph Henry (1835) The First Relay

Electromagnetic relays used in telephone switching.

1941: The First electrically powered digital computer!

- 2000 relays used in Z3 having a binary 22-bit floating point and ~6 hertz speed.
- Computers based on vacuum tube and transistor took over at and around the WW-II.

Konrad Zuse with Z3

The Rest is History! **CMOS Transistor Dominated Last 70 Years**

A Science & Technology Center

Center for Energy Efficien **Electronics Science**

21st Century Relay Design for Digital Logic 4 or 6-terminal design **3-terminal design** Source as reference Body as reference Source1 Source Source2 Bodv Gate Gate Drain1 Drain2 Drain Switching is dependent on Switching is independent of source voltage. source voltage. □ Can act as "pull-up" (*p*-relay) or "pull-Current modulation is dependent on source voltage. down" (n-relay) switch.

Center for Energy Efficien

Electronics Science

Variability in V_{PI}, V_{RL} and V_H

Center for Energy Efficien

Electronics Science

Self-assembled Molecular (SAM) Coating

Silane functional groups for molecular self-assembly.

 H_3C

 H_3

1H,1H,2H,2H-perflurodecyltriethoxysilane**PFDTES**Length ~ 1.5 nm

Chemistry of Relay Coating

Vapor-phase SAM growth in a low vacuum environment.

 $CH_2CH_2(CF_2)_7CF_3$ $(CF_2)=n=7$

Characterization of SAM (Contact Angle)

Bare Si Surface

Contact Angle ~30° Measured at 3 points

Contact Angle ~97° Measured at 3 points

PFDTES coating on Si Changes in the contact angle between water and sample surface suggest self-assembled molecule growth.

n	t (nm)	α (°)
Bulk		109
7	1.5	97±2
5	1.3	92±3
0	0.5	85±2
None	0.0	30±3
	Center	for Energy Efficient

SAM layers are grown on bare-Si (and bare-W) substrates for the contact angle measurements.

□ SAM growth were achieved for all the "n".

A Science & Technology Center

Electronics Science

Center for Energy Efficien

Electronics Science

Characterization of SAM (XPS and EDX)

Energy Dispersive X-ray Spectroscopy

Fluorine signal suggest presence of molecule.

Surface Roughness on W Electrodes

Atomic Force Microscopy measurement of Relay W contact Surfaces before and after coating.

- Roughness before and after coating = 7.6 nm.
- Asperity Density
 - Before coating: 17 +/- 4 asperities / μm²
 - After coating: 18 +/- 3 asperities / μm²
- Average Asperity Separation

Before coating 108 +/- 63 nm spacing,

After coating 102 +/- 50 nm spacing

Adhesion Energy and Cycling Test

Hamaker Constant

The London-van der Waals force:

- Attractive, short range force and decays rapidly to zero away from a surface.
- The origin lies in the instantaneous dipole generated by the fluctuation of electron cloud surrounding the nucleus of electrically neutral atoms.
 10⁻¹⁸

Summary of Adhesion Energy Densities

V_H decreases, V_{PI} shifts (change in effective actuation gap and electrostatic interaction).

Center for Energy Efficier

Electronics Science

Sub-threshold swing (SS) increases slightly.

□ V_H is reduced (by ~41%) with SAM coating.

ON-state resistance (R_{ON}) is not greatly affected.

Relay-Based Inverter Circuit

 \Box V_{OUT} does not reach V_{DD} due to 1 M Ω oscilloscope internal resistance.

Engineering SAM Chain Length

PFDTES

$$H_{3}C \longrightarrow O \longrightarrow CH_{3} n = (CF_{2}) = 7$$

 $H_{3}C \longrightarrow O \longrightarrow CH_{2}CH_{2}(CF_{2})_{7}CF_{3}$

Length ~ 1.5 nm

- Adhesive Force and Hysteresis Voltage Reduces
- Sub-threshold Swing Increase (that ultimately is its limiting factor)

Can the adhesive force/ hysteresis voltages be reduced while retaining abrupt switching?

Critical thickness (volume) for lowering adhesive force vs. critical thickness for low R_{ON} , sub-threshold swing.

Engineering SAM Chain Length

Length ~ 1.5 nm

- Adhesive force and Hysteresis voltage reduces
- Sub-threshold Swing • increase (that ultimately is its limiting factor)

PFTTES OCH_3 F₃C Si-OCH₃ **n=0** OCH_3

Length ~ 0.5 nm

- Adhesive force and hysteresis voltage does not reduce.
- Sub-threshold Swing decreases w.r.t PFDTES.

2016 EAB Meeting

10/30/2018 A Science & Technology Center

V _G (mV)	R _{on} (Κ-Ω)
150 (R)	66
200	58
250	46
300	45
350	40

How Does Current Flow? Relay Coated with n=5 molecule

V _G (mV)	R _{ON} (Κ-Ω)
125 (R)	76
150	51
175	20
200	12

A Science & Technology Center

Center for Energy Efficient

How Does Current Flow? (one more example)

- Allowed to oxidize deliberately.
- Current doesn't reach compliance of 10⁻⁵A.

• Tunneling through the Oxides?

2016 EAB Meeting

Electronics Science

Comparison With Other Sub-thermionic Switches

Use mechanical contact make/break to achieve device operation.

Gate Actuation Voltage ~ 50 mV

Challenges: Speed, reliability, large-size and others.

A Science & Technology Center

Negative Capacitance

□ Use a ferroelectric material as gate to achieve negative capacitance, and, hence reduce sub-threshold swing..

Currently Developed

Challenges: Proof of concept, and beyond

Center for Energy Efficient Electronics Science

Conclusion

- Sub-50 mV Nano-electromechanical Relay Switch Devices Demonstrated for the First-time.
- A conjugation of chemistry, physics, materials science and device research promises a new era in electronic devices.

THANK YOU

Center for Energy Efficie

Electronics Science

Center for Energy Efficient Electronics and Sciences @ UC Berkeley

Researchers:

- 1. Benjamin Osoba.
- 2. Jane Edgington.
- 3. Liam Dougherty.
- 4. Laura Brandt.
- 5. Jatin Patil.
- 6. Don Rollings
- 7. Farnaz Niroui
- 8. Chung Qian

Relay Fabrication Process

A Science & Technology Center

- Deposit Al₂O₃ substrate insulator
 ALD at 300°C
- Deposit & pattern W electrodes
- DC magnetron sputtering
- Deposit 1st sacrificial LTO
- LPCVD at 400°C

Define contact regions

Deposit 2nd sacrificial LTO

t_{dimple} = t_{gap} / 2

Deposit & pattern W channel

Deposit Al₂O₃ gate oxide

Relay Fabrication Process (Cont'd)

A Science & Technology Center

Deposit p+ poly-Si_{0.4}Ge_{0.6} gate

• LPCVD at 410°C

Pattern gate & gate oxide layers using LTO as a hard mask

Release in HF vapor

- Coat with ultra-thin (~0.3nm) TiO₂
 - ALD at 300°C

Effects of Body Bias

NEM Relay Equations

Non-Pull in Mode

A Science & Technology Center

$$V_{\rm ON} = \sqrt{\frac{2k_{\rm eff}g_{\rm CONT}(g_{\rm ACT} - g_{\rm CONT})^2}{\varepsilon_0 A_{\rm ACT}}} \qquad V_H = V_{\rm RL} = \sqrt{\frac{2(k_{\rm eff}g_{\rm CONT} - F_{\rm adh})(g_{\rm ACT} - g_{\rm CONT})^2}{\varepsilon_0 A_{\rm ACT}}}$$
Inverter
$$V_{\rm OUT} = \frac{R_{\rm ON}R_{\rm osc}}{R_{\rm ON}R_{\rm osc} + R_L(R_{\rm ON} + R_{\rm osc})}V_{\rm DD}.$$
Relay Motion Eq.
$$m_{\rm eff}\ddot{g} + b\dot{g} - k_{\rm eff}(g_{\rm ACT} - g) = \frac{-\varepsilon_0 A_{\rm ACT}(V_G - V_B)^2}{2\left(g + \frac{d}{\varepsilon_r}\right)^2}$$

$$V_H = V_{\text{ON}} - V_{\text{RL}} \approx \frac{F_{\text{adh}} (g_{\text{ACT}} - g_{\text{CONT}})}{\sqrt{2\varepsilon_0 A_{\text{ACT}} k_{\text{eff}} g_{\text{CONT}}}}$$

Impact of SAM Coating on Subthreshold Swing

Thickness of PFDTES at the contact is ~3 nm; since the molecule is insulating, it impedes current flow and increases sub-threshold swing.

Center for Energy Efficient

Sub-threshold swing increases to unacceptable values, which prevents advances made due to hysteresis voltage reduction.

> Center for Energy Efficient Electronics Science