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Tunnel Transistors As a More Sensitive Electronic Switch
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Tunnel Transistors As a More Sensitive Electronic Switch

Can we achieve 2D materials with 
2D interface defect density     
<<1012 states/cm2eV?
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Dit Through Capacitance and AC Conductance Measurements

W. Zhu et. al, Nat. Comm. DOI: 10.1038/ncomms4087 (2014)

10um

• Cs: the quantum capacitance, Cj: the parasitic capacitance, 
Cox: the oxide capacitance, rs: the series resistance

• YitM and YitB: admittance of the traps 
(YitB=[τitB/CitB+1/(iωCitB)]−1 )



Dit Through Capacitance and AC Conductance Measurements

W. Zhu et. al, Nat. Comm. DOI: 10.1038/ncomms4087 (2014)



Dit Through Capacitance and AC Conductance Measurements

W. Zhu et. al, Nat. Comm. DOI: 10.1038/ncomms4087 (2014)

D0 : 3.3 × 1014 eV−1cm−2 (the 2D density-of-states for MoS2)

 : the characteristic energy width of the band tail

’ is chosen so that the two piece-wise functions have continuous 

gradients at ED

Best fit α=0.33 and  = 100 meV.

• band tail states follow an 

exponentially decaying 

behavior

• a significantly large 

energy width of 100 meV



Improving from previous results

• Understanding of the microscopic origin of these trap states is critical 

for further improvement of the material’s electronic properties

 Contribution from the substrate, processing:

o hBN substrate vs. SiO2

o Transfer process

 Intrinsic materials quality

o Characterization /correlation

o Improve on the synthesis process



Goal: High quality 2D materials with low defect densities

• Defect characterization
Various types of defects and characterization development
Contribution to defect states

• Defect traps states characterization
• C-V and Dit measurement
• Correlation with device characteristics: mobility, contact resistance
• Correlation with optical characteristics? 

MoS2 will be used as a model system
Work in Progress!

W. Zhou et. al, Nano Letters 
13, 2615-2622, (2013)



Grain boundary defect characterization

• Photoluminescence mapping 
(Intensity, peak position): 440nm 
resolution

• SNOM PL mapping: 110nm 
resolution

Z. Liu et. al, Nat. Comm 5, 5346 (2014)

Y. Lee et. al, Nanoscale 7, 11909 (2015)



Phase-Modulated Optical Parametric Amplification Imaging 

• EOM: modulates the relative optical 
phase between the two fields (1 
MHz to a depth of 2π) according to a 
saw tooth waveform

• the two fields exchange intensity 
according to the phase modulation 
and the sample’s nonlinear response

• Advantages over SHG:
• Much easier

• No need for single photon detector

• Normal room lighting

• Capture phase of the input signal in 
addition to its magnitude

Collaboration with William Tisdale group in Chem E at MIT

Y. Gao et. al., manuscript in preparation



MoS2 Grain Orientation

: orientation of monolayer MoS2
triangle relative to the field 
polarizations
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• Second harmonic generation (SHG) in monolayer MoS2

• pOPA signals in monolayer MoS2



MoS2 Grain Characterization

• Grains with mirror symmetry distinguished

• Better contrast and higher resolution

Collaboration with William Tisdale group in ChemE @MIT

Y. Gao et. al., manuscript in preparation



MoS2 Grain Characterization

A. M. van der Zande et. al., Nat 
Mater 12, 554-561 (2013)



MoS2 Grain Characterization

• Various types of grain boundaries 
contribute to midgap states or 
even metallic conduction

• Need to avoid these via growth of 
much larger single crystalline 
domains

Collaboration with William Tisdale group in ChemE @MIT

Y. Gao et. al., manuscript in preparation
A. M. van der Zande et. al., Nat Mater 12, 554-561 (2013)



Moving forward: large single crystal grains in MoS2

• single crystalline Sapphire growth substrate

• Oxygen assisted CVD

D. Dumcenco et. al, ACS Nano 9, 4611-4620 (2015)

W. Chen et. al, JACS 137, 
15632 (2015)



Improvement on the synthesis and transfer

perylene-3,4,9,10-tetracarboxylic acid 

tetrapotassium salt (PTAS)

• Simpler PL features instead of PL 
quantum yield?

• Surface passivation with superacid
treatment: 

• Significant impact in optoelectronic 
applications

• Effect of passivation on electronic or 
defect states?



Moving forward: Correlating optical with electrical characterizations

• C-V measurement and device characterizations on MoS2 with various PL 
characteristics 
 Superacid treated MoS2

• Capacitance measurement through “vertical” devices instead of “lateral”: 
(collaboration with Prof. Ray Ashoori group at MIT)

Thin BN
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MoS2

Graphite gate Au



Optical characterizations with various shapes of MoS2

Concave Round (Convex) Triangle
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Concave TriangleRound (convex)
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PL Fitting for Exciton and Trion Transitions 

H. Nan et al. ACS nano 8.6 (2014): 5738-5745



H. Shu et. al., ACS Appl. Mater. Interfaces 2016, 8, 13150−13156

Oxygen passivation and enhanced optical absorption of MoS2

• Sulfur vacancy: one shallow localized state around VBM, two others midgap

• Oxygen passivation: shallow localized state -> a flat “molecular state” 
0.015eV above VBM Triangular type I (convex similar)



RSH ~ 63 kΩ/□

µeff ~ 23 cm2/Vs

Rc ≤ 500 Ω µm 

n ~ 5.7 x 1012 cm-2 

Low-Contact- Resistance Monolayer MoS2 Transistors 

MoS2 A1gMoS2 PL



Improvement on the synthesis and transfer

• Clean transfer avoiding polymer residue

30x30nm



Synthesis of other 2D materials
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Mater. Stable phase periodicity Layer distance bandgap

MoS2 2H 0.316 nm 0.61 nm 1.8 eV (1L)

VS2 1T 0.322 nm 0.58 nm metal

VS2 vs. MoS2: similar structures, complementary properties



2VCl3(s) → VCl4(g) + VCl2(s);  VCl4(g) + 2H2(g) + 2S(g) → VS2(s) + 4HCl(g)

Q. Ji et al. Nano Lett. 17, 4908 (2017)

Δh ~6 nm

2 μm

Multilayer “VS2” flakes



Q. Ji et al. Nano Lett. 
17, 4908 (2017)

VS2 and V5S8 domains



“VS2” is first grown/transferred, and MoS2 grows adjacent to “VS2” flakes

Two step CVD growth for hetero-structure

20 μm

VS2 region

10 μm 10 μm



Roughening of the “VS2” regions

As-grown VS2 Annealed VS2

VS2 after MoS2 growth



Lch =1 μm

“VS2” electrical contacts

• Preliminary results indicate better contact with “VS2”
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Thank you very much!


