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The Challenge of semiconductor industry

Power Crisis
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Scaling of  VDD 

Lower Subthreshold Swing

Low power transistors  low 
subthreshold swing

www. electroiq.com

Applications: 
 Analog to Digital 

converters
 Neuromorphic 

Computing 
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How to achieve low Subthreshold Swing? 
Transmission Engineering

MOSFETs: 

Shifting a
Rigid Band

S-1 = (qαG/kBT + dlnT/dVG)/ln10
_______

Electrostatic origin
(60 mV/dec)

Quantum Origin

Landauer

E

f

Transport gap shift = < 60 mV/decade

Transport gap shift = |VG|
 60 mV/decade

T
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Transport Modulation Channel Modulation Band Modulation 

Examples: Transmission Engineering

Tunnel FETMOTT FET Klein Tunnel FET

Shukla et al., Nature Communications, 2015.
Ghosh,  IEEE Journal of the Electron Devices 
Society, 2015.

P+ N+

Collimator Filter

EF

EF UG

Ghosh,  IEEE Journal of the Electron Devices Society, 2015.
Ghosh, Nanoelectronics: A molecular view, 2016. 

Sajjad, Ghosh, ACS Nano, 
2013
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Challenge of TFET

Simulations Experiments

High E-field, smaller width

Low E-field, larger width

Lu and Seabaugh, IEEE 
Journal of the Electron 
Devices Society, 2015
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TFET: simulations predict lower SS than experiments.

What are the possible reasons?

Challenge of TFET

Simulations Experiments

30mV/dec
85mV/dec
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What contribute to the off-current in 
reality? 

Trap Assisted Tunneling 
(TAT) e-e interactions like Auger
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Auger effect introduces extra off-current even if 
traps/defects are eliminated
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Why auger is important?

Auger generation is important for low 
SS TFETs.
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Outline

Material parameters

Compact model of TFET

Auger effect in TFET
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010011

How to get correct material parameters?
Modified tight binding

Modified tight binding is used to extract 
material parameters 

What we need 

m*, bandedge

Wave function 
overlaps

AlInAs Experiment ETB
6ML 1.27 eV 1.24 eV
8ML 1.16 eV 1.17 eV

ETB model:
 Calibrated with DFT 

band structures
 Calibrated with DFT 

wave functions
 Match experiments

Compact model 
of TFT

Auger effect 
in TFET

ETB with explicit basis functions

Alternate: Extended Huckel Theory (Ghosh)Tan et al., Physical Review B, 
2016. 
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Outline

Material parameters

Compact model of TFET

Auger effect in TFET
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Chemistry Based Analytical Model: 
Using Simmons Equation 

Potential Model
 Solving Laplace Equation 

Two band model:
 Band-to-band tunneling

Current:
WKB+k-space integration

Ballistic model for TFETs:
Modified Simmons Equation using 

two band model

VGS =0V, 0.1V, 0.2V

P+ N+InGaAs Channel 

Bardon et al., IEEE Transactions on electron Devices, 2010.
Simmons, Phys. Rev. Letters, 1953.
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Calibration: Homojunction and 
Heterojunction

Avci, VLSIT,  2012.
Long, IEEE Electron Device Letters, 2016.

Homojunction

Type II Heterojunction

Compact model match NEGF 
calculations (single Hetero TFET)

Lchannel = 100nm

Lchannel = 30nm

P+ N+InGaAs Channel 

GaSb
P+ InAs Channel InAs

N+
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Compact model based circuit simulation 

Generate device 
models for 

custom 
simulation flow

Hierarchical 
models of 

circuits/systems

Automated

Performance 
Feedback

Device/Phy
sics 

Modeling

Generate Pareto 
curves for 

comparison across 
hierarchy

Encapsulate 
in Compact 

Models

Iterative

>100x Energy 
Reduction

Ultra-low Voltage

Rapid Circuit Simulation Flow for TFET Models

Circuit design/analysis based on 
compact model

Collaborators: Daniel Truesdell, Ben 
Calhoun (UVA) Huang et al, IEEE Transactions on 

Electron Devices, 2016
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Outline

Material parameters

Compact model of TFET

Auger effect in TFET
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Physics of Auger process: basics

 Auger generation generate extra off 
current;

 Depends on the hole density and overlaps 
of CB and VB

Auger generation 

 Dominates in the OFF state;

 Energy and momentum conserved;

 Depends on hole density p and wave 
function overlaps 
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Physics of Auger process:
Auger in different device structures

AugerAuger

E1

E1’

Auger process in 2D and quasi 3D:
Slightly different density of states

Auger in 2D: 
 In a 2D plane
 Discrete E1 and E1’ in quantum 

wells

Auger in Quasi 3D:
 In a 2D plane
 Continuous E1 and E1’

Teherani, Journal of 
Applied Physics, 2016. 

P+ N+
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Physics of Auger process:
Auger process in ON-OFF states

1'

1

2'

2

EC

EV

Auger generation in the 
OFF-state

Occupancy of the conduction bands affect the 
Auger generation rates.   

Empty 
conduction 

band

Auger generation in the 
ON-state

Limits the Subthreshold swing

1

2'

2
EC

EV

Partially occupied 
conduction band

1'
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Impacts of Auger

Auger Effect limit the SS and off-
current.

10x SS increase

Single heterojunction TFETsHomojunction TFETs

TAT increases SS by a 2x
( Sajjad, 2016)  
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Compact model of TFET
 Compact model developed and benchmarked
 For both homojunction and heterojunction

Auger effect in TFET
 Auger effect is calculated
 Auger effect limit the SS 

TAT + Auger can explain discrepancy between simulation and 
experiment 

Summary
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