Large spontaneous emission rate enhancement in a III-V antenna-LED

Seth A. Fortuna¹, Christopher Heidelberger², Nicolas M. Andrade¹, Eugene A. Fitzgerald², Eli Yablonovitch¹, and Ming C. Wu¹

¹University of California, Berkeley; Dept. of Electrical Engineering and Computer Sciences ²Massachusetts Institute of Technology; Dept. of Materials Science and Engineering

A Science & Technology Center

Center for Energy Efficient Electronics Science

Spontaneous emission

Radiation rate
$$\propto \left(\frac{x_0}{\lambda_0}\right)^2$$

Spontaneous emission is **SLOW**

$$\lambda_0 \sim 1000$$
 nm
 $\lambda_0 \sim 1000$ nm
 $\lambda_0 \sim \lambda_0$
semiconductor $x_0 \ll \lambda_0$

1

Enhancement
$$\sim \left(\frac{L}{d}\right)^2$$

Spontaneous emission is **FAST**

Center for Energy Efficien

Electronics Science

Electrically-injected III-V antenna-LED

- Electrical injection is straight forward
- Directional light emission for coupling into waveguide

A Science & Technology Center

• > 100 GHz direct modulation rate

Antenna-enhanced electroluminescence

200-fold enhancement of spontaneous emission rate

Process induced surface damage

A Science & Technology Center

Before device processing: SRV $\cong 3 \times 10^4$ cm/s

After device processing: $SRV > 10^5 \text{ cm/s}$

Surface needs to be protected during fabrication!

Efficient waveguide Coupling

Summary

- Demonstrated 200-fold enhancement of spontaneous emission rate of electrically injected nanoscale III-V LED
- > High efficiency possible despite large surface recombination velocity of III-V surface
- Ultra-clean InGaAs surface using sacrificial Al₂O₃
- Efficient and broadband coupling to single-mode on-chip waveguide is possible.

Acknowledgments

- Financial support
 - NSF Science and Technology Center for Energy Efficient Electronics Science (E³S)
 - □ Air Force Office of Scientific Research (AFOSR)
 - **Berkeley Sensor & Actuator Center (BSAC)**
- > Technical support
 - **UC Berkeley Marvell Nanolab staff**

ridge

Advantages:

- Electrical injection is straight forward
- Self-aligned
- Directional light emission
- Thermal heat-sink

Spontaneous emission enhancement measurement

> Antenna enhancement directly increases quantum efficiency

Electroluminescence measurement

Optical image (frontside)

Measurement setup

Electronics Science

A Science & Technology Center

Toward >100 GHz direct modulation rate at high efficiency

- MOCVD growth by Fitzgerald group (MIT)
- Multiple quantum well (MQW) active region
- Doped active region and cladding layers
 - Highly doped n-contact layer

Electronics Science

Electrically-injected III-V antenna-LED

Advantages:

- Electrical injection is straight forward
- Self-aligned fabrication
- Directional light emission for coupling into waveguide
- > 100 GHz direct modulation rate

A Science & Technology Center

Cut-away drawing

