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Synthesis

Multi-scale levels of
investigation in analysis
of the central nervous
system (adapted from
Churchland and
Sejnowski 1992) and
corresponding
neuromorphic synthesis
of highly efficient silicon
cognitive microsystems.
Boltzmann statistics of
ionic and electronic
channel transport
provide isomorphic
physical foundations.

G. Cauwenberghs,

Reverse Engineering
the Cognitive Brain,
PNAS, 2013

gert@ucsd.edu



Scaling of Task and Machine Complexity
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Achieving (or surpassing) human -level machine intelligence requires
a convergence between:
A Advances in computing resources approaching connectivity and
energy efficiency levels of computing and communication in the brain;

A Advances in deep learning methods, and supporting data, to adaptively
reduce algorithmic complexity.
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Scaling and Complexity Challenges

A Scaling the event-based neural systems to performance
and efficiency approaching that of the human brain will
require:

d Scalable advances in silicon integration and architecture

A Scalable, locally dense and globally sparse interconnectivity
EE 0 Hierarchical addressvent routing

NanoE A High density (1012 neurons, 1015 synapses within 5L volume)
Phys d Silicon nanotechnology and[3 integration

A High energy efficiency (10® synOPS/s at 15W power)
d Adiabatic switching in event routing and synaptic drivers

d Scalable models of neural computation and synaptic plasticity
Neuro A Convergence between cognitive and neuroscience modeling
CS A Modular, neuromorphic design methodology
CogSci A Data-rich, environment driven evolution of machine complexity

Gert Cauwenberghs Energy Efficiency in Adaptive Neural Circuits gert@ucsd.edu



Large-Scale Reconfigurable Neuromorphic Computing
Technology and Performance Metrics

Stromatias 2013 Merolla 2014 Schemmel 2010 | Benjamin 2014 Park 2014
SpiNNaker SyNAPSE TrueNorth| FACETS/BrainScaleS NeuroGrid IFAT
Manchester IBM Heidelberg Stanford UCSD

Technology (nm) 130 28 180 180 90
Die Size (mm?) 102 430 50 168 16

Analog Analog Analog
Conductance Shared-Dendrite 2-Compartment
Integrate & Fire Conductance I&F  Conductance 1&F

# Neurons 52161 1M 2 512 65k 65k
Neuron Area (mm?) N/A L 3325(14) 2 1500 1800 140

Peak Throughput
(Events/s)

Energy Efficiency
(J/SynEvent)

Digital Digital

Neuron Type Arbitrary Accumulate & Fire

5M 1G 65M 91M 73M
8n 26p N/A 31p 22p

1 Software-instantiated neuron model

2 Time-multiplexed neuron (256x)

Benjamin, B., P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen, Neurogrid:
A mixed analog-digital multichip system for large-scale neural simulations, Proc. IEEE, 102(5):699i1 716, 2014.

Merolla, P.A., J.V. Arthur, R. Alvarez-Icaza, A S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, and D. S. Modha, A million spiking-neuron integrated circuit
with a scalable communication network and interface, Science, 345(6197):6681 673, 2014.

Park, J., S. Ha, T. Yu, E. Neftci, and G. Cauwenberghs, 65k-neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array
transceiver, Proc. 2014 IEEE Biomedical Circuits and Systems Conf. (BioCAS), 2014.

Schemmel, J., D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Millner, A waferscale neuromorphic hardware system for large-scale neural
modeling, Proc. 2010 IEEE Int. Symp. Circuits and Systems (ISCAS), 19471 1950, 2010.

Stromatias, E., F. Galluppi, C. Patterson, and S. Furber, Power analysis of largescale, real-time neural networks on SpiNNaker, Proc. 2013 Int.
Joint Conf. Neural Networks (IJCNN), 2013.
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Long-Range Configurable Synaptic Connectivity
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Comparison of synaptic connection topologies for several recent large-scale event-driven neuromorphic systems and the proposed hierarchical
address-event routing (HIAER), represented diagrammatically in two characteristic dimensions of connectivity: expandability (or extent of global
reach), and flexibility (or degrees of freedom in configurability). Expandability, measured as distance traveled across the network for a given
number of hops N, varies from linear and polynomial in N for linear and mesh grid topologies to exponential in N for hierarchical tree-based
topologies. Flexibility, measured as the number of target destinations reachable from any source in the network, ranges from unity for point-to-
point (P2P) connectivity and constant for convolutional kernel (Conv.) connectivity to the entire network for arbitrary (Arb.) connectivity.
MMAER: Multicasting Mesh AER; WS: Wafer-Scale.
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Hierarchical Address-Event Routing (HIAER) Integrate-and-Fire Array Transceiver (IFAT) for scalable and reconfigurable neuromorphic
neocortical processing. (a) Biophysical model of neural and synaptic dynamics. (b) Dynamically reconfigurable synaptic connectivity is
implemented across IFAT arrays of addressable neurons by routing neural spike events locally through DRAM synaptic routing tables. (c) Each
neural cell models conductance based membrane dynamics in proximal and distal compartments for synaptic input with programmable axonal
delay, conductance, and reversal potential. (d) Multiscale global connectivity through a hierarchical network of HIAER routing nodes. (e) HIAER-
IFAT board with 4 IFAT custom silicon microchips, serving 256k neurons and 256M synapses, and spanning 3 HIAER levels (LO-L2) in
connectivity hierarchy. (f) The IFAT neural array multiplexes and integrates (top traces) incoming spike synaptic events to produce outgoing spike
neural events (bottom traces). The IFAT microchip measured energy consumption is 22 pJ per spike event, several orders of magnitude more
efficient than emulation on CPU/GPU platforms.

Yu et al, BioCAS 2012; Park et al, BioCAS 2014; Park et al, TNNLS 2017; Broccard et al, INE 2017

Gert Cauwenberghs Energy Efficiency in Adaptive Neural Circuits gert@ucsd.edu




Phase Change Memory (PCM) Nanotechnology
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Intel/STmicroelectronics (Numonyx) 256Mb multi-level phase-change memory (PCM) [Bedeschi et al, 2008]. Die
size is 36mm2 in 90nm CMOS/Ge2Sh2Te5, and cell size is 0.097nmm2. (a) Basic storage element schematic, (b)
active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline
direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming
characteristic, (f) I-V characteristic of pnp bipolar selector.

d Scalable to high density and energy efficiency
A < 100nm cell size in 32nm CMOS
A < pJ energy per synapse operation
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Kuzum, Jeyasingh, Lee, and Wong
(ACS Nano, 2011)
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Hybridization and nanoscale integration of CMOS neural arrays with phase change memory (PCM) synapse crossbar arrays. (a) Nanoelectronic
PCM synapse with spike-timing dependent plasticity (STDP) [Kuzum et al, 2011]. Each PCM element implements a synapse with conductance
modulated through phase transition as controlled by timing of voltage pulses. (b) CMOS IFAT array vertically interfacing with nanoscale PCM
synapse crossbar array by interleaving via contacts to crossbar rows. The integration of IFAT neural and PCM synapse arrays externally
interfacing with HIAER neural event communication combines the advantages of highly flexible and reconfigurable HIAER-IFAT neural
computation and long-range connectivity with highly efficient (fJ/synOP range energy cost) local synaptic transmission.

Gert Cauwenberghs Energy Efficiency in Adaptive Neural Circuits gert@ucsd.edu



Spiking Synaptic Sampling Machine (S3M)

Biophysical Synaptic Stochasticity in Inference and Learning

Synaptic stochasticity as biophysical model
of continuous DropConnect

Presynaptic
Neuron

Stochastic £(t) 1 0 10001 11 1011
Synapse {(t) -

Postsynaptic Upost(t)

Neuron Zpost (1)

3’"_‘(” | I N I (NN N

— SSM

0.92 0.95
MNIST Recognition Accuracy

58 5 The S3M requires fewer synaptic operations

' =(t) « W (SynOps) than the equivalent Restricted

_ _ _ _ Boltzmann Machine (RBM) requires

Time-varying Bernoulli random masking multiply-accumulate (MAC) operations at
of weights the same accuracy.

d Stochastic synapses for spikebased Monte Carlo sampling

A Models biophysical origins of noise in neural systems

A Activity dependent noise: multiplicative synaptic sampling rather than additive neural
sampling

A Sparsity in neural activity and in synaptic connectivity

o Online unsupervised |earning with STDP Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi,

) _ ) ) MaruanAl-Shedi vat, Gert Cauwe
A Biophysical model of spike-based learning Synapses Enable Efficient Brain-Inspired Learning

Ari ; : Ma c h i rrrergiersin Neuroscience, vol. 10, pp.
A Event-driven contrastive divergence 3389:1-16 (DOI: 10.3389/fnins.2016.00241), 2016.
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Silicon Learning Machines for Embedded Sensor
Adaptive Intelligence

Large-Margin Kernel
Regression

Sensory
Features

MAP Forward
Decoding

GiniSVM

Kerneltron:
massively parallel
support vector
machine (SVM) in
silicon (3ssc 2007)

Class Identification

Sequence ldentification

Sub-microwatt
speaker verification
and phoneme
recognition

(NIPS 2004)




Kerneltron: Adiabatic Support Vector Machine

Karakiewicz, Genov and Cauwenberghs , 2007
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Resonant Charge Energy Recovery
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Adaptive Low-Power Sensory Systems

Sensor

Charge-domain
Analog Signal
Processing

2pJ/MAC 14b 8% 8 Linear
Transform MixedSignal
Spatial Filter in 65nm CMOS
with 84dB Interference
Suppression

S. Joshi et al, ISSCC 2017

Digital
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Low-dimensional, Digital
Low-resolution Adaptation
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Linear Transform Analog and Mixed-Signal
Sensory Processing

Analog Digital

Sensor

Digital adaptation

A Application Enabler
A Lower Power
A Analog processing gain lowers A/D requirements

Processing gain: Improvement in SNR/DR due to ASP

S. Joshi et alx8Linearplhrisiorh ®ixedJignal 8patial Filter in 65nm CMOS with
84dB I nterference Suppression, o | SSCC 2017
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Spatial Processing Gain
Improvement in SNR/DR due to ASP

ADC Dynamic Range

information 22-bits to resolve

Conventional both signal

and interference
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System Measurements

Nested Thermometer Multiplying DACs
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