
Gert Cauwenberghs gert@ucsd.eduEnergy Efficiency in Adaptive Neural Circuits

Energy Efficiency in Adaptive 

Neural Circuits

Gert Cauwenberghs

Department of Bioengineering

Institute for Neural Computation

UC San Diego

http://inc.ucsd.edu



Gert Cauwenberghs gert@ucsd.eduEnergy Efficiency in Adaptive Neural Circuits

Lee Sedol vs. AlphaGo
Go World Champion vs. Google DeepMind

~ 100 W ~ 100 kW
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Analysis by Synthesis

Richard Feynman Carver Mead
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G. Cauwenberghs, 

“Reverse Engineering 

the Cognitive Brain,”
PNAS, 2013

Multi-scale levels of 

investigation in analysis 

of the central nervous 

system (adapted from 

Churchland and 

Sejnowski 1992) and 

corresponding 

neuromorphic synthesis 

of highly efficient silicon 

cognitive microsystems.  

Boltzmann statistics of 

ionic and electronic 

channel transport 

provide isomorphic 

physical foundations. 
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Scaling of Task and Machine Complexity

Achieving (or surpassing) human-level machine intelligence requires 
a convergence between:

• Advances in computing resources approaching connectivity and 

energy efficiency levels of computing and communication in the brain;

• Advances in deep learning methods, and supporting data, to adaptively 

reduce algorithmic complexity.  

Machine

Complexity
Throughput;

Memory;

Power;

Size

Task Complexity
Search tree breadth^ depth

[log]

[log]

Human brain
1015 synOP/s; 15W

Deep digital search
Rule-based cognition

Collective 

analog 

computation
Learned/habitual 

cognition

Neuromorphic 

engineering

Deep 

learning

G. Cauwenberghs, “Reverse Engineering the Cognitive Brain,” PNAS, 2013
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Synaptic Sampling Machine (SSM)

E. Neftci et al, 2016
Adiabatic CID-DRAM SVM (Kerneltron)

R. Karakiewicz et al, 2013



Gert Cauwenberghs gert@ucsd.eduEnergy Efficiency in Adaptive Neural Circuits

Scaling and Complexity Challenges

• Scaling the event-based neural systems to performance 

and efficiency approaching that of the human brain will 

require:

– Scalable advances in silicon integration and architecture

• Scalable, locally dense and globally sparse interconnectivity

– Hierarchical address-event routing

• High density (1012 neurons, 1015 synapses within 5L volume)

– Silicon nanotechnology and 3-D integration

• High energy efficiency (1015 synOPS/s at 15W power)

– Adiabatic switching in event routing and synaptic drivers

– Scalable models of neural computation and synaptic plasticity

• Convergence between cognitive and neuroscience modeling

• Modular, neuromorphic design methodology

• Data-rich, environment driven evolution of machine complexity

EE

NanoE

Phys

Neuro

CS

CogSci
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Large-Scale Reconfigurable Neuromorphic Computing
Technology and Performance Metrics

Stromatias 2013 

SpiNNaker

Manchester

Merolla 2014 
SyNAPSE TrueNorth

IBM

Schemmel 2010 
FACETS/BrainScaleS

Heidelberg

Benjamin 2014

NeuroGrid

Stanford

Park 2014

IFAT

UCSD

Technology (nm) 130 28 180 180 90

Die Size (mm2) 102 430 50 168 16

Neuron Type
Digital

Arbitrary

Digital

Accumulate & Fire

Analog

Conductance 

Integrate & Fire

Analog

Shared-Dendrite 

Conductance I&F

Analog

2-Compartment 

Conductance I&F

# Neurons 5216 1 1M 2 512 65k 65k

Neuron Area (mm2) N/A 1 3325 (14) 2 1500 1800 140

Peak Throughput 

(Events/s)
5M 1G 65M 91M 73M

Energy Efficiency

(J/SynEvent)
8n 26p N/A 31p 22p

1 Software-instantiated neuron model
2 Time-multiplexed neuron (256x)

Benjamin, B., P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen, “Neurogrid: 

A mixed analog-digital multichip system for large-scale neural simulations,” Proc. IEEE, 102(5):699–716, 2014.

Merolla, P.A., J.V. Arthur, R. Alvarez-Icaza, A S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, 

S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit 

with a scalable communication network and interface,” Science, 345(6197):668–673, 2014.

Park, J., S. Ha, T. Yu, E. Neftci, and G. Cauwenberghs, “65k-neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array 

transceiver,” Proc. 2014 IEEE Biomedical Circuits and Systems Conf. (BioCAS), 2014.

Schemmel, J., D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Millner, “A waferscale neuromorphic hardware system for large-scale neural 

modeling,” Proc. 2010 IEEE Int. Symp. Circuits and Systems (ISCAS), 1947–1950, 2010.

Stromatias, E., F. Galluppi, C. Patterson, and S. Furber, “Power analysis of largescale, real-time neural networks on SpiNNaker,” Proc. 2013 Int. 

Joint Conf. Neural Networks (IJCNN), 2013.
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Long-Range Configurable Synaptic Connectivity

Comparison of synaptic connection topologies for several recent large-scale event-driven neuromorphic systems and the proposed hierarchical 

address-event routing (HiAER), represented diagrammatically in two characteristic dimensions of connectivity: expandability (or extent of global 

reach), and flexibility (or degrees of freedom in configurability). Expandability, measured as distance traveled across the network for a given 

number of hops N, varies from linear and polynomial in N for linear and mesh grid topologies to exponential in N for hierarchical tree-based 

topologies. Flexibility, measured as the number of target destinations reachable from any source in the network, ranges from unity for point-to-

point (P2P) connectivity and constant for convolutional kernel (Conv.) connectivity to the entire network for arbitrary (Arb.) connectivity.

MMAER: Multicasting Mesh AER; WS: Wafer-Scale.
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Hierarchical Address-Event Routing (HiAER) Integrate-and-Fire Array Transceiver (IFAT) for scalable and reconfigurable neuromorphic 

neocortical processing.  (a) Biophysical model of neural and synaptic dynamics. (b) Dynamically reconfigurable synaptic connectivity is 

implemented across IFAT arrays of addressable neurons by routing neural spike events locally through DRAM synaptic routing tables.  (c) Each 

neural cell models conductance based membrane dynamics in proximal and distal compartments for synaptic input with programmable axonal 

delay, conductance, and reversal potential. (d) Multiscale global connectivity through a hierarchical network of HiAER routing nodes.  (e) HiAER-

IFAT board with 4 IFAT custom silicon microchips, serving 256k neurons and 256M synapses, and spanning 3 HiAER levels (L0-L2) in 

connectivity hierarchy.  (f) The IFAT neural array multiplexes and integrates (top traces) incoming spike synaptic events to produce outgoing spike 

neural events (bottom traces).  The IFAT microchip measured energy consumption is 22 pJ per spike event, several orders of magnitude more 

efficient than emulation on CPU/GPU platforms.

Yu et al, BioCAS 2012; Park et al, BioCAS 2014; Park et al, TNNLS 2017; Broccard et al, JNE 2017
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(a) (b) (c)

(d) (e) (f)

Phase Change Memory (PCM) Nanotechnology

Intel/STmicroelectronics (Numonyx) 256Mb multi-level  phase-change memory (PCM) [Bedeschi et al, 2008].  Die 

size is 36mm2 in 90nm CMOS/Ge2Sb2Te5, and cell size is 0.097mm2.  (a) Basic storage element schematic, (b) 

active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline 

direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming 

characteristic, (f) I-V characteristic of pnp bipolar selector. 

– Scalable to high density and energy efficiency
• < 100nm cell size in 32nm CMOS

• < pJ energy per synapse operation



Gert Cauwenberghs gert@ucsd.eduEnergy Efficiency in Adaptive Neural Circuits

Hybridization and nanoscale integration of CMOS neural arrays with phase change memory (PCM) synapse crossbar arrays.  (a) Nanoelectronic

PCM synapse with spike-timing dependent plasticity (STDP) [Kuzum et al, 2011].  Each PCM element implements a synapse with conductance 

modulated through phase transition as controlled by timing of voltage pulses.  (b) CMOS IFAT array vertically interfacing with nanoscale PCM 

synapse crossbar array by interleaving via contacts to crossbar rows.  The integration of IFAT neural and PCM synapse arrays externally 

interfacing with HiAER neural event communication combines the advantages of highly flexible and reconfigurable HiAER-IFAT neural 

computation and long-range connectivity with highly efficient (fJ/synOP range energy cost) local synaptic transmission.

(a)

(b)

Kuzum, Jeyasingh, Lee, and Wong

(ACS Nano, 2011)
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Spiking Synaptic Sampling Machine (S3M)
Biophysical Synaptic Stochasticity in Inference and Learning

– Stochastic synapses for spike-based Monte Carlo sampling
• Models biophysical origins of noise in neural systems

• Activity dependent noise: multiplicative synaptic sampling rather than additive neural 

sampling

• Sparsity in neural activity and in synaptic connectivity

– Online unsupervised learning with STDP
• Biophysical model of spike-based learning

• Event-driven contrastive divergence

Emre O. Neftci, Bruno U. Pedroni, Siddharth Joshi, 

Maruan Al-Shedivat, Gert Cauwenberghs, “Stochastic 

Synapses Enable Efficient Brain-Inspired Learning 

Machines,” Frontiers in Neuroscience, vol. 10, pp. 

3389:1-16 (DOI: 10.3389/fnins.2016.00241), 2016.

Time-varying Bernoulli random masking 

of weights

Synaptic stochasticity as biophysical model 

of continuous DropConnect

The S3M requires fewer synaptic operations 

(SynOps) than the equivalent Restricted 

Boltzmann Machine (RBM) requires 

multiply-accumulate (MAC) operations at 

the same accuracy.
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Silicon Learning Machines for Embedded Sensor 

Adaptive Intelligence

ASP A/D
Sensory
Features

DigitalAnalog

Large-Margin Kernel 
Regression

Class Identification

Kerneltron: 
massively parallel 
support vector 
“machine” (SVM) in 
silicon (JSSC 2007)

MAP Forward 
Decoding

Sequence Identification

Sub-microwatt 
speaker verification 
and phoneme 
recognition  
(NIPS’2004)

GiniSVM



Gert Cauwenberghs gert@ucsd.eduEnergy Efficiency in Adaptive Neural Circuits

• 1.2 TMACS / mW
– adiabatic resonant clocking 

conserves charge energy

– energy efficiency on par with 
human brain (1015 SynOP/S 
at 15W)

Kerneltron: Adiabatic Support Vector “Machine”
Karakiewicz, Genov and Cauwenberghs , 2007

Karakiewicz, Genov, and Cauwenberghs, VLSI’2006; CICC’2007
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Resonant Charge Energy Recovery
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Adaptive Low-Power Sensory Systems

Charge-domain 
Analog Signal 

Processing

Low-dimensional, 
Low-resolution 
Digital Coding

Digital adaptation

Outputs
DSPAFE+ASP ADC

DigitalAnalog

Sensor

Digital 
Adaptation

2pJ/MAC 14b 8×8 Linear 
Transform MixedSignal
Spatial Filter in 65nm CMOS 
with 84dB Interference 
Suppression

S. Joshi et al, ISSCC 2017
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Digital adaptation

Outputs
DSPAFE+ASP ADC

DigitalAnalog

Sensor

Linear Transform Analog and Mixed-Signal 

Sensory Processing

• Application Enabler

• Lower Power

• Analog processing gain lowers A/D requirements

Processing gain: Improvement in SNR/DR due to ASP

S. Joshi et al, “2pJ/MAC 14b 8×8 Linear Transform MixedSignal Spatial Filter in 65nm CMOS with 
84dB Interference Suppression,” ISSCC 2017
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Spatial Processing Gain

14-bit

Improvement in SNR/DR due to ASP
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System Measurements
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Measurements: Angular Resolution

Experimental setup.

Finite gain of OTA affects performance below 

10˚
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Measurements: SIR

Pint = +6dBm

input switch 

nonlinearity limits 

performance.

Psig:   , Pint:fixed

Psig:fixed, Pint:

Pint Psig

225

kHz

255

kHz

Pint Psig

225

kHz

255

kHz

Pint Psig

225

kHz

255

kHz

Performance 

maintained at 

0dBm interferer 

power.
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Spatial filtering to separate signal mixture

Constellation

64-QAM resolved

RMS EVM 2.9%

16-QAM resolved

RMS EVM 3.1%

Application: MIMO Communication
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Application: MIMO Communication

Beamforming Performance (baseband only)

Tseng et. al.

JSSC 2010

Ghaffari et. al.

JSSC 2014

Kim et. al.

JSSC 2015
This work

Received EVM (dB) -25 - -28.8 -30.8

Effective number of bits 5 5 8 14

Angular Resolution (°) 22.5 22.5 <5a <1a

Interferer Cancellation (dB) 30b 15b,c 48b >80b

CMOS Technology (nm) 90 65 65 65

Power at Baseband (mW) 10d 68-195e 1.3 0.396

Bandwidth at Baseband 

(MHz)
20 5 3 2.4

aGreater than 15 dB cancellation, bCancellation at 45° angular separation, cOut of beam, 
dLO power only, eTotal power reported baseband power not reported

S. Joshi et al, “2pJ/MAC 14b 8×8 Linear Transform MixedSignal Spatial Filter in 65nm CMOS with 
84dB Interference Suppression,” ISSCC 2017
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Closing the Loop: Interactive Neural/Artificial Intelligence
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Integrated Systems Neuroengineering
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