Deep Learning with Coherent Nanophotonic Circuits

<u>Yichen Shen</u>, Nicholas Harris, Dirk Englund, Marin Soljacic Massachusetts Institute of Technology @ Berkeley, Oct. 2017

Neuromorphic Computing

Biological Neural Networks

Artificial Neural Networks (ANN)

Breakthroughs in deep learning:

- Natural Language Processing (NLP)
- Game Playing (Go, Atari)
- Autonomous Vehicles
- Control
- Ad Placement
- Researches (drug discovery, material study)
- Etc.

Basic Algorithm of ANN

Deep Learning with Coherent Nanophotonic Circuits

Hardware and Data Enable Deep Learning

The Need for Speed

More Data \rightarrow Bigger Models \rightarrow More need for Computation

But Moore's Law is no-longer providing more computation...

The Market:

On clouds: Millions of high power AI processors (\$10,000 each) in data centers by 2020

On premise: Billions of compact AI processors needed due to the rise of autonomouse driving, AR and IoT.

Optical AI Computing

The New York Eimes

Science

WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH	SPORTS	OPINION	
					ENVIF	RONMENT	SPACE & CC	SMOS	

LIGHT MAY BE KEY TO NEW GENERATION OF FAST COMPUTERS

By WILLIAM J. BROAD Published: October 22, 1985

SINCE its start nearly half a century ago, the computer revolution has advanced by virtue of a simple physical phenomenon: that streams of speeding electrons can start or stop the flow of other streams of electrons. In short, electrons can act as a switch.

In Deep Learning

Key Operation is dense M x V

In Optics, Matrix Multiplication is very common & (usually) consumes no energy !

Convolution / FFT

Matrix Multiplication

Programmable Nanophotonic Processors

J. Mower *et al*, Physical Reviews A, 92, 032322 (2015) Carolan, Jacques, et al. "Universal linear optics." Science 349.6249 (2015): 711-716.

ANN does NOT require high resolution

Category	Method	Weights (# of bits)	Activations (# of bits)	Accuracy Loss vs. 32-bit float (%)
Dynamic Fixed	w/o fine-tuning	8	10	0.4
Point	w/ fine-tuning	8	8	0.6
Reduce weight	Ternary weights Networks (TWN)	2*	32	3.7
	Trained Ternary Quantization (TTQ)	2*	32	0.6
	Binary Connect (BC)	1	32	19.2
	Binary Weight Net (BWN)	1*	32	0.8
Reduce weight and activation	Binarized Neural Net (BNN)	1	1	29.8
	XNOR-Net	1*	1	11
Non-Linear	LogNet	5(conv), 4(fc)	4	3.2
	Weight Sharing	8(conv), 4(fc)	16	0

* first and last layers are 32-bit float

Deep Learning with Coherent Nanophotonic Circuits Sze et al, arXiv:1703.09039 (2017)

Deep Learning Inference is "Passive"

Once the Optical Neural Network is trained, no need to update the weights frequently...

Deep Learning with Coherent Nanophotonic Circuits

Deep Learning is very parallelizable

Multiple wavelengths can be used to simultaneously execute batch of data

Coherent Optical Neural Networks (ONN)

Optical Vowel Recognition (4d 4 classes)

Y. Shen and N. Harris et al, Nature Photonics, 11, 441-446 (2017)

Deep Learning with Coherent Nanophotonic Circuits

Experimental Result

Simulation Result: 165/180=91.7% Experiment Result: 138/180=76.7%

Deep Learning with Coherent Nanophotonic Circuits

Fully Connected Neural Networks

Recurrent Neural Networks

Deep Learning with Coherent
 Nanophotonic Circuits

Convolutional Neural Networks

Recurrent Neural Networks

Commonly used for Speech Recognition and Language Processing

Convolution Neural Networks

Scott Skirlo and Yichen Shen et al, Manuscript in Preparation

Deep Learning with Coherent Nanophotonic Circuits

Optical Convolutional Neural Network

Scott Skirlo and Yichen Shen et al, Manuscript in Preparation

Not to Scale

*modified block diagram from TPU architecture

Speed and Energy Efficiency Comparison with Electrical ANN

	NVIDIA TITAN X	ONN (with thermal PS)
Architecture	Von Neumann	Neuromorphic
Power Consumption	1 kW	1-2 kW
Operation Speed	10 TFLOP	10,000 TFLOP

 $P = P_{PS} + P_{OE/EO}$ = $1mW \times N^2 + 300mW \times 2N$ = 1.6 kW

Speed = $10bit \times N^2 \times 1 GHz$ = 10,000 TFLOP/s

Y. Shen and N. Harris et al, Nature Photonics 11, 441 (2017)

• Deep Learning with Coherent Nanophotonic Circuits

nature JULY 2017 VOL 11 NO 7 www.nature.com//naturephotonics photopics

Optical neural networks

METASURFACES Retroreflectors

2D MATERIALS Valley exciton-polaritons

ELECTRON MICROSCOPY Ultrafast optical gate

SUBSCRIPT.

SCIENTIFIC AMERICAN

States - Col. 11 North | Papele

Light-Powered Computers Brighten AI's Future

Optical computers may have finally found a use-improving artificial intelligence

The large Directed and Jack Million

Some History on Optical Neural Networks

2005

"The biggest issue with this paper is that it relies on neural networks."

Anonymous Reviewer

Springtime for AI: The Rise of Deep Learning

2016

After decades of disappointment, artificial intelligence is finally catching up to its early promise, thanks to a powerful technique called deep learning

By Yoshua Bengio on June 1, 2016

SCIENTIFIC AMERICAN

Acknowledgement

Scott Skirlo PhD, Physics MIT

Li Jing PhD, Physics MIT

Nicholas Harris PhD, EECS MIT

Prof. Dirk Englund EECS, MIT

Prof. Marin Soljacic Physics, MIT

Institute for Soldier Nanotechnologies

Optical Convolutional Neural Network

Scott Skirlo and Yichen Shen et al, Manuscript in Preparation

Nonlinearity

For Deep Learning, the constraint on nonlinearity is weak

A. Selden, British Journal of Applied Physics 18, 743 (1967)
M. Soljacic, Physical Review E 66, 055601 (2002)
Z. Cheng et al, IEEE Journal of Selected Topics in Quantum Electronics 20.1 (2014): 43-48.

Deep Learning with Coherent Nanophotonic Circuits