
Engin Ipek

Department of Electrical and Computer Engineering

University of Rochester

Memristive Accelerators for Data Intensive 

Computing: From Machine Learning to High 

Performance Linear Algebra

“For Internal E3S Use Only. These Slides May Contain 

Prepublication Data and/or Confidential Information.”



RRAM

PCM

STT

The Changing Landscape of 
Memory Technologies

SRAM

DRAM

FLASH

HDD

Lower

Cost

Capacity

Higher

Speed

Higher

Endurance



 Opportunity: improve and augment the existing memory hierarchy

Core 1 Core N

Memory Controller

D R A M

CacheSTT-MRAM based 

microarchitectures
[ISCA’10] [TCAS-II]

Byte addressable, 

persistent memory
[ASPLOS’10 Best Paper]

[MICRO Top Picks’10]

[SOSP’09] [ISCA’09]

STT-MRAM caches
[TVLSI’15] [TED’15] 

[TED’14] 

In-Situ Memristive

Accelerators
[HPCA’18]

[MICRO Top Picks’17]

[HPCA’16 Best Paper] 

[GOMAC’15] 

[ISCA’13] [MICRO’11] 

Architectures Leveraging Emerging Memories



 Opportunity: improve and augment the existing memory hierarchy

Core 1 Core N

Memory Controller

D R A M

CacheSTT-MRAM based 

microarchitectures
[ISCA’10] [TCAS-II]

Byte addressable, 

persistent memory
[ASPLOS’10 Best Paper]

[MICRO Top Picks’10]

[SOSP’09] [ISCA’09]

STT-MRAM caches
[TVLSI’15] [TED’15] 

[TED’14] 

In-Situ Memristive

Accelerators
[HPCA’18]

[MICRO Top Picks’17]

[HPCA’16 Best Paper] 

[GOMAC’15] 

[ISCA’13] [MICRO’11] 

Architectures Leveraging Emerging Memories



 Opportunity: improve and augment the existing memory hierarchy

Core 1 Core N

Memory Controller

D R A M

CacheSTT-MRAM based 

microarchitectures
[ISCA’10] [TCAS-II]

Byte addressable, 

persistent memory
[ASPLOS’10 Best Paper]

[MICRO Top Picks’10]

[SOSP’09] [ISCA’09]

STT-MRAM caches
[TVLSI’15] [TED’15] 

[TED’14] 

In-Situ Memristive

Accelerators
[HPCA’18]

[MICRO Top Picks’17]

[HPCA’16 Best Paper] 

[GOMAC’15] 

[ISCA’13] [MICRO’11] 

This Talk



Memristive Boltzmann Machine

A hardware accelerator for combinatorial 

optimization and deep learning



Combinatorial Optimization

 Numerous critical problems in science and engineering can be 

cast within the combinatorial optimization framework.

DNA

Analysis

Artificial

Intelligence

10010

01    1

1001

Data

Mining

Pharmaceuticals

Communication

Networks

Combinatorial

Optimization Problems

Traveling Salesman

Knapsack

Scheduling

Machine Learning

Bin Packing

Approximate

Heuristic Algorithms

Genetic Algorithms

Ant Colony Optimization

Semi-Definite Programming

Simulated Annealing

Tabu Search

The Boltzmann Machine

Simulated Annealing

Massively

Parallel

Limited 

Parallelism



The Boltzmann Machine

 Two-state units connected with real-valued edge weights form 

a stochastic neural network.

 Goal: iteratively update the state or weight variables to 

minimize the network energy (E).

xj

The Boltzmann Machine

Σ

x0

x3

w3,j

w0,j

1

1 + eδ/C

Control

Parameter

δ = (2xj-1) Σxiwi,j

E = -½ ΣΣxixjwi,j

xi

wi,j



Minimizing Network Energy

 Two-state units connected with real-valued edge weights form 

a stochastic neural network.

 Goal: iteratively update the state or weight variables to 

minimize the network energy (E).

The Boltzmann Machine

0 1

0

1

1

5

1
-4 1

-2

-9 -3

0 1

0

1

0

5

1
-4 1

-2

-9 -3

Optimization E = -1
E = 4



Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network.

4 1 3

1 7

5

Graphical Model✔

Boltzmann Machine



Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network.

× -2

✔

✔
4 1 3

1 7

5

-8 -2 -6

-2 -14

-10

Graphical Model

Boltzmann Machine



4 1 3

1 7

5

Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network.

9 9

1095

+

✔

✔

✔

-8 -2 -6

-2 -14

-10

Graphical Model

Boltzmann Machine



Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network. E = -5E = …E = -19

✔

✔

✔

✔

✔

4 1 3

1 7

5

9 9

1095

0 0

0 1 1

-8 -2 -6

-2 -14

-10
-- --

-- -- --

1 0

0 0 1

Graphical Model

Boltzmann Machine



Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network.

Cost = 19

✔

✔

✔

✔

✔

✔

4 1 3

1 7

5

9 9

1095

1 0

0 0 1

-8 -2 -6

-2 -14

-10

E = -19

Graphical Model

Boltzmann Machine



Computational Model

 Network energy is minimized by adjusting either the edge 

weights or recomputing the states.

 Iterative matrix-vector multiplication between weights and 

states is critical to finding minimal network energy.

The Boltzmann Machine

Data

Movement

Functional Units

………

Memory Arrays
w0,0 w0,1 …

w1,0…

x0

x1…

Σ, ×, 1

1 + ex



Resistive Random Access Memory

 An RRAM cell comprises an access transistor and a resistive 

switching medium.

Memristor

Wordline Bitline

The Boltzmann Machine Functional Units

………

RRAM Arrays

V

RRAM: Resistive RAM

(source: HP, 2009)



 A read is performed by activating a wordline and measuring 

the bitline current (I).

Resistive Random Access Memory

I = V/R1

V

‘1’

R1

The Boltzmann Machine Functional Units

………

RRAM Arrays



Memristive Boltzmann Machine

 Key Idea: exploit current summation on the RRAM bitlines to 

compute dot product.

‘1’

‘1’

‘1’

‘1’

I =ΣV/Ri

V

The Boltzmann Machine Functional Units

………

RRAM Arrays



Memristive Boltzmann Machine

 Memory cells represent the weights and state variables are 

used to control the bitline and wordlines.

I =ΣV/Ri

w01

w02

w03

w04

I =ΣW0i

V

X1

X2

X3

X4

X0

I =(2X0-1)ΣXiW0i

The Boltzmann Machine Functional Units

………

RRAM Arrays

2X0-1



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

SA SA SA

R
o
w

 D
e
co

d
e
r

Represent weights in fixed point, 2’s complement.
✔

0 1 1

32 bit

weight



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

Employ CMOS latches for efficient state updates.

SA SA SA

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

✔

Count the number of 1s for column summation.

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn

ADC ADC ADC

latch Analog to Digital

Converter

ADC ADC ADC



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

✔

Iteratively generate partial sums.

32

wordlines

5 bits

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn

ADC ADC ADC



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

✔

Iteratively generate partial sums.

Generate

Partial Sum

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn

0

0

1

1

1

1

0

1

0

ADC ADC ADC

0 1 1

0 1 1

1 0 0

0 1 1

1 0 0

0 0 0



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

✔

✔

Add zeroes to align the partial sum bits.

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn

0

0

1

1

1

1

0

1

0

ADC

0

1

0

ADC

0

0

1

ADC

0

0

1

Zero

Padding0

00

Zero

Padding
0

0 0



Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.

✔

✔

✔

✔

Add zeroes to align the partial sum bits.

R
o
w

 D
e
co

d
e
r

enable

x0

x1

xi

xj

xk

xn

0

0

1

1

1

1

0

1

0

ADC

0

1

0

ADC

0

0

1

ADC

0

0

1

0

00

0

0 0

+
+

FA

Serial Addition



Chip Organization

 A hierarchical organization with a configurable reduction tree 

is used to compute a large sum of bit products.

Mat Subbank H-Tree

Bank

Reduction

Tree

Controller

Chip



Interfacing with Software

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor. CPU

D R A M

DDR3 reads and writes are used for configuration

and data transfer.

Accelerator

DIMM

Controller



Hardware Acceleration

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor.

DDR3 reads and writes are used for configuration

and data transfer.

Accelerator

DIMM

1. Configure the DIMM

2. Write weights and states

3. Compute

3. Read the outcome

Controller

CPU

D R A M



Controller

Hardware Acceleration

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor.

DDR3 reads and writes are used for configuration

and data transfer.

Accelerator

DIMM

Model (m×n)

n

m

1. Configure the DIMM

2. Write weights and states

3. Compute

3. Read the outcome

CPU

D R A M



Hardware Acceleration

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor.

DDR3 reads and writes are used for configuration

and data transfer.

Accelerator

DIMM

1. Configure the DIMM

2. Write weights and states

3. Compute

3. Read the outcome

Controller

Start

Ready

CPU

D R A M



Hardware Acceleration

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor.

DDR3 reads and writes are used for configuration

and data transfer.

Accelerator

DIMM

1. Configure the DIMM

2. Write weights and states

3. Compute

3. Read the outcome

Controller

Start

Ready

CPU

D R A M



Experimental Setup

 Architecture

 1 and 8 out-of-order core(s)

 32KB private L1 caches

 8MB shared L2 cache

 4 DDR3-1600 DRAM channels

 Synthesis

 Cadence RTL Compiler 

 FreePDK library

 CACTI 6.5, NVSim with RRAM cells

 McPAT

 Evaluated Baselines

 Software kernels

 Semi-definite programming (Max-Cut)

 Max Walk SAT (Max-SAT)

 Deep Belief network (DBN)

 Boltzmann machine (Max-Cut, Max-
SAT)

 PIM-based hardware accelerator

 Workloads

 Max-Cut, Max-SAT, and DBN

 10 SAT problems (fault analysis)

 10 matrices (University of Florida)

 Images from Olivetti at ATT



Experimental Setup

 PIM-based Hardware Accelerator

PIM Banks

PIM 

Controller

…… ……

RRAM

Arrays

CMOS

Logic GatesSRAM for

States



Maximum Cut

Semi-definite

Programming

Multi-threaded

Kernel
PIM Accelerator

Memristive

Accelerator

16x

38x

3.9x

4.7x



Maximum SAT

MaxWalkSAT

Multi-threaded

Kernel
PIM Accelerator

Memristive Accelerator

31x

73x

6.7x
8x



Deep Learning

Multi-threaded

Kernel
PIM Accelerator

Memristive Accelerator

42x

60x

5.6x6.8x



In-situ computation for iterative linear solvers

Beyond Machine Learning



Linear Algebra Is Everywhere

 Sparse linear systems 

are at the heart of 

data science

 Contemporary 

supercomputers are 

inefficient at solving 

sparse linear systems

Physical Simulations

Utilize

Differential Equations

Are discretized into

Sparse Matrices

and solved on

Supercomputers

The Opportunities and Challenges of Exascale Computing, 2010.

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

http://www.cise.ufl.edu/research/sparse/matrices/HB/bcsstk13.html

http://info.circ.rochester.edu/BlueHive/System_Overview.html



Our Approach to Iterative Linear Solvers

 Leverage memristive network to quickly obtain an 

approximate solution

 Use approximate solution to seed conventional 

iterative solver

Result: Faster solution with no loss of  precision



Key Observations

 Node voltages in a resistive 

network can be calculated by 

solving a linear system

 Conversely, any linear systems 

can be solved by emulation on 

a resistive network

4
1

 Recently, it has become practical to build large-scale resistive 

networks using newly-developed memristor technology

 Dense

 Scalable

 Programmable

 Reliable



System Overview

Memristive Accelerator

Solving for  𝑥 in 𝑨  𝑥 = 𝑏.

 𝑟  𝑦 = 𝑨  𝑥

 𝑑 ≈ 𝑨−𝟏  𝑟
 𝑥

 𝑥

𝑏

Analog 

Estimator

Locals:

𝑏,  𝑥

Bitwise 

Multiplier

 𝑥 =  𝑥 +  𝑑

 𝑟 = 𝑏 −  𝑦

CPU

Memristive

Accelerator



Preliminary Results

 1500x speedup as compared to a GPGPU

 Residuals decay faster and with fewer operations

1E-08

1E-06

1E-04

1E-02

1E+00

1E+02

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

R
e
la

ti
v
e
 R

e
si

d
u
a
l

Iterations

CG on GPGPU
Proposed Accelerator



Summary

Memristors have potential beyond

the memory hierarchy

 Emerging resistive memory devices can improve the 
energy efficiency and latency of important workloads

 Machine learning

 Optimization

 Simulation & modeling



Engin Ipek

Department of Electrical and Computer Engineering

University of Rochester

Memristive Accelerators for Data Intensive 

Computing: From Machine Learning to High 

Performance Linear Algebra


