"For Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information."

Memristive Accelerators for Data Intensive Computing: From Machine Learning to High Performance Linear Algebra

Engin Ipek

Department of Electrical and Computer Engineering University of Rochester

The Changing Landscape of Memory Technologies

Architectures Leveraging Emerging Memories

Opportunity: improve and augment the existing memory hierarchy

Architectures Leveraging Emerging Memories

Opportunity: improve and augment the existing memory hierarchy

STT-MRAM based microarchitectures [ISCA'10] [TCAS-II]

Byte addressable, persistent memory [ASPLOS'10 Best Paper] [MICRO Top Picks'10] [SOSP'09] [ISCA'09]

STT-MRAM caches [TVLSI'15] [TED'15] [TED'14]

In-Situ Memristive Accelerators [HPCA'18] [MICRO Top Picks'17] [HPCA'16 Best Paper] [GOMAC'15] [ISCA'13] [MICRO'11]

This Talk

Opportunity: improve and augment the existing memory hierarchy

STT-MRAM based microarchitectures [ISCA'10] [TCAS-II]

Byte addressable, persistent memory [ASPLOS'10 Best Paper] [MICRO Top Picks'10] [SOSP'09] [ISCA'09]

STT-MRAM caches [TVLSI'15] [TED'15] [TED'14]

In-Situ Memristive Accelerators [HPCA'18] [MICRO Top Picks'17] [HPCA'16 Best Paper] [GOMAC'15] [ISCA'13] [MICRO'11]

Memristive Boltzmann Machine

A hardware accelerator for combinatorial optimization and deep learning

Combinatorial Optimization

Numerous critical problems in science and engineering can be cast within the combinatorial optimization framework.

The Boltzmann Machine

- Two-state units connected with real-valued edge weights form a stochastic neural network.
- Goal: iteratively update the state or weight variables to minimize the network energy (E).

Minimizing Network Energy

- Two-state units connected with real-valued edge weights form a stochastic neural network.
- Goal: iteratively update the state or weight variables to minimize the network energy (E).

The Boltzmann Machine

- Choose appropriate instance of Boltzmann machine.
- Choose appropriate edge weights.
- Choose appropriate biases.
- Initialize the network state.
- Minimize energy by adjusting the unit states.
- Read and interpret the final state of the network.

UNIVERSITY of

UNIVERSITY of

- Choose appropriate edge weights.
- Choose appropriate biases.
- Initialize the network state.
- Minimize energy by adjusting the unit states.
- Read and interpret the final state of the network.

Computational Model

- Network energy is minimized by adjusting either the edge weights or recomputing the states.
- Iterative matrix-vector multiplication between weights and states is critical to finding minimal network energy.

Resistive Random Access Memory

 An RRAM cell comprises an access transistor and a resistive switching medium.

RRAM: Resistive RAM (source: HP, 2009)

Resistive Random Access Memory

 A read is performed by activating a wordline and measuring the bitline current (I).

Memristive Boltzmann Machine

Key Idea: exploit current summation on the RRAM bitlines to compute dot product.

 $I = \Sigma V / R_i$

The Boltzmann Machine

Memristive Boltzmann Machine

 Memory cells represent the weights and state variables are used to control the bitline and wordlines.

- 1T-1R array is employed to store the connection weights (W).
- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

Represent weights in fixed point, 2's complement.

- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

Employ CMOS latches for efficient state updates.

- 1T-1R array is employed to store the connection weights (W).
- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

UNIVERSITY of

Count the number of 1s for column summation.

- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

Iteratively generate partial sums.

- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

UNIVERSITY of

Iteratively generate partial sums.

- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

UNIVERSITY of

Add zeroes to align the partial sum bits.

- 1T-1R array is employed to store the connection weights (W).
- State variables (x) are kept at the periphery.
- Column sense amplifier quantizes current into a multi-bit digital value.
- Bit summation tree merges the partial sums generated by sense amps.

Add zeroes to align the partial sum bits.

Chip Organization

 A hierarchical organization with a configurable reduction tree is used to compute a large sum of bit products.

Interfacing with Software

Software configures the on-chip data layout and initiates the optimization by writing to a memory mapped control register.

To maintain ordering, accesses to the accelerator are made uncacheable by the processor.

DDR3 reads and writes are used for configuration and data transfer.

Software configures the on-chip data layout and initiates the optimization by writing to a memory mapped control register.

To maintain ordering, accesses to the accelerator are made uncacheable by the processor.

DDR3 reads and writes are used for configuration and data transfer.

1. Configure the DIMM

- 2. Write weights and states
- 3. Compute
- 3. Read the outcome

D R A M

Software configures the on-chip data layout and initiates the optimization by writing to a memory mapped control register.

To maintain ordering, accesses to the accelerator are made uncacheable by the processor.

DDR3 reads and writes are used for configuration and data transfer. **1. Configure the DIMM** 2. Write weights and states Model (m × n) 3. Compute D R M 3. Read the outcome Controller Accelerator DIMM m

n

Software configures the on-chip data layout and initiates the optimization by writing to a memory mapped control register.

To maintain ordering, accesses to the accelerator are made uncacheable by the processor.

DDR3 reads and writes are used for configuration and data transfer. **1. Configure the DIMM** 2. Write weights and states 3. Compute D R A M 3. Read the outcome Controller Start Accelerator <ead DIMM

Software configures the on-chip data layout and initiates the optimization by writing to a memory mapped control register.

To maintain ordering, accesses to the accelerator are made uncacheable by the processor.

DDR3 reads and writes are used for configuration and data transfer. **1. Configure the DIMM** 2. Write weights and states 3. Compute D R A M 3. Read the outcome Controller Star Accelerator Ready DIMM

Experimental Setup

Architecture

- 1 and 8 out-of-order core(s)
- 32KB private L1 caches
- 8MB shared L2 cache
- 4 DDR3-1600 DRAM channels

Workloads

- Max-Cut, Max-SAT, and DBN
- 10 SAT problems (fault analysis)
- 10 matrices (University of Florida)
- Images from Olivetti at ATT

Synthesis

- Cadence RTL Compiler
- FreePDK library
- □ CACTI 6.5, NVSim with RRAM cells
- McPAT
- Evaluated Baselines
 - Software kernels
 - Semi-definite programming (Max-Cut)
 - Max Walk SAT (Max-SAT)
 - Deep Belief network (DBN)
 - Boltzmann machine (Max-Cut, Max-SAT)
 - PIM-based hardware accelerator

Experimental Setup

PIM-based Hardware Accelerator

Maximum Cut

Maximum SAT

Deep Learning

Beyond Machine Learning

In-situ computation for iterative linear solvers

Linear Algebra Is Everywhere

- Sparse linear systems are at the heart of data science
- Contemporary
 supercomputers are
 inefficient at solving
 sparse linear systems

The Opportunities and Challenges of Exascale Computing, 2010. http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations http://www.cise.ufl.edu/research/sparse/matrices/HB/bcsstk13.html http://info.circ.rochester.edu/BlueHive/System_Overview.html

Supercomputers

Our Approach to Iterative Linear Solvers

- Leverage memristive network to quickly obtain an approximate solution
- Use approximate solution to seed conventional iterative solver

Result: Faster solution with no loss of precision

Key Observations

- Node voltages in a resistive network can be calculated by solving a linear system
- Conversely, any linear systems
 can be solved by emulation on
 a resistive network

- Recently, it has become practical to build large-scale resistive networks using newly-developed memristor technology
 - Dense

Programmable

Scalable

Reliable

System Overview

Preliminary Results

1500x speedup as compared to a GPGPU

Residuals decay faster and with fewer operations

Summary

Memristors have potential beyond the memory hierarchy

- Emerging resistive memory devices can improve the energy efficiency and latency of important workloads
 - Machine learning
 - Optimization
 - Simulation & modeling

"For Internal E3S Use Only. These Slides May Contain Prepublication Data and/or Confidential Information."

Memristive Accelerators for Data Intensive Computing: From Machine Learning to High Performance Linear Algebra

Engin Ipek

Department of Electrical and Computer Engineering University of Rochester

