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Memristive Boltzmann Machine

A hardware accelerator for combinatorial 

optimization and deep learning



Combinatorial Optimization

 Numerous critical problems in science and engineering can be 

cast within the combinatorial optimization framework.
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The Boltzmann Machine

 Two-state units connected with real-valued edge weights form 

a stochastic neural network.

 Goal: iteratively update the state or weight variables to 

minimize the network energy (E).
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Minimizing Network Energy

 Two-state units connected with real-valued edge weights form 

a stochastic neural network.

 Goal: iteratively update the state or weight variables to 

minimize the network energy (E).
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Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network.
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Example: Maximum Cut
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machine.

 Choose appropriate 
edge weights.

 Choose appropriate 
biases.

 Initialize the network 
state.

 Minimize energy by 
adjusting the unit 
states.

 Read and interpret 
the final state of the 
network. E = -5E = …E = -19

✔

✔

✔

✔

✔

4 1 3

1 7

5

9 9

1095

0 0

0 1 1

-8 -2 -6

-2 -14

-10
-- --

-- -- --

1 0

0 0 1

Graphical Model

Boltzmann Machine



Example: Maximum Cut

 Choose appropriate 
instance of Boltzmann 
machine.
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Computational Model

 Network energy is minimized by adjusting either the edge 

weights or recomputing the states.

 Iterative matrix-vector multiplication between weights and 

states is critical to finding minimal network energy.
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Resistive Random Access Memory

 An RRAM cell comprises an access transistor and a resistive 

switching medium.

Memristor
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 A read is performed by activating a wordline and measuring 

the bitline current (I).

Resistive Random Access Memory
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Memristive Boltzmann Machine

 Key Idea: exploit current summation on the RRAM bitlines to 

compute dot product.
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Memristive Boltzmann Machine

 Memory cells represent the weights and state variables are 

used to control the bitline and wordlines.
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Array Structure

 1T-1R array is 

employed to store the 

connection weights (W).

 State variables (x) are 

kept at the periphery.

 Column sense amplifier 

quantizes current into a 

multi-bit digital value.

 Bit summation tree 

merges the partial sums 

generated by sense 

amps.
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Chip Organization

 A hierarchical organization with a configurable reduction tree 

is used to compute a large sum of bit products.
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Interfacing with Software

Software configures the 

on-chip data layout and 

initiates the optimization 

by writing to a memory 

mapped control register.

To maintain ordering, 

accesses to the 

accelerator are made 

uncacheable by the 

processor. CPU

D R A M

DDR3 reads and writes are used for configuration

and data transfer.
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Hardware Acceleration

Software configures the 

on-chip data layout and 
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by writing to a memory 
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Controller
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Experimental Setup

 Architecture

 1 and 8 out-of-order core(s)

 32KB private L1 caches

 8MB shared L2 cache

 4 DDR3-1600 DRAM channels

 Synthesis

 Cadence RTL Compiler 

 FreePDK library

 CACTI 6.5, NVSim with RRAM cells

 McPAT

 Evaluated Baselines

 Software kernels

 Semi-definite programming (Max-Cut)

 Max Walk SAT (Max-SAT)

 Deep Belief network (DBN)

 Boltzmann machine (Max-Cut, Max-
SAT)

 PIM-based hardware accelerator

 Workloads

 Max-Cut, Max-SAT, and DBN

 10 SAT problems (fault analysis)

 10 matrices (University of Florida)

 Images from Olivetti at ATT



Experimental Setup

 PIM-based Hardware Accelerator
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Maximum Cut
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Multi-threaded

Kernel
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Maximum SAT

MaxWalkSAT
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Kernel
PIM Accelerator

Memristive Accelerator

31x

73x

6.7x
8x



Deep Learning

Multi-threaded

Kernel
PIM Accelerator

Memristive Accelerator

42x

60x

5.6x6.8x



In-situ computation for iterative linear solvers

Beyond Machine Learning



Linear Algebra Is Everywhere

 Sparse linear systems 

are at the heart of 

data science

 Contemporary 

supercomputers are 

inefficient at solving 

sparse linear systems

Physical Simulations

Utilize

Differential Equations

Are discretized into

Sparse Matrices

and solved on

Supercomputers

The Opportunities and Challenges of Exascale Computing, 2010.

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

http://www.cise.ufl.edu/research/sparse/matrices/HB/bcsstk13.html

http://info.circ.rochester.edu/BlueHive/System_Overview.html



Our Approach to Iterative Linear Solvers

 Leverage memristive network to quickly obtain an 

approximate solution

 Use approximate solution to seed conventional 

iterative solver

Result: Faster solution with no loss of  precision



Key Observations

 Node voltages in a resistive 

network can be calculated by 

solving a linear system

 Conversely, any linear systems 

can be solved by emulation on 

a resistive network

4
1

 Recently, it has become practical to build large-scale resistive 

networks using newly-developed memristor technology

 Dense

 Scalable

 Programmable

 Reliable



System Overview

Memristive Accelerator

Solving for  𝑥 in 𝑨  𝑥 = 𝑏.

 𝑟  𝑦 = 𝑨  𝑥

 𝑑 ≈ 𝑨−𝟏  𝑟
 𝑥

 𝑥

𝑏

Analog 

Estimator

Locals:

𝑏,  𝑥

Bitwise 

Multiplier

 𝑥 =  𝑥 +  𝑑

 𝑟 = 𝑏 −  𝑦

CPU

Memristive

Accelerator



Preliminary Results

 1500x speedup as compared to a GPGPU

 Residuals decay faster and with fewer operations
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Summary

Memristors have potential beyond

the memory hierarchy

 Emerging resistive memory devices can improve the 
energy efficiency and latency of important workloads

 Machine learning

 Optimization

 Simulation & modeling
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