Investigations on Techniques for Rapid Extraction of Topology Information for the Circle of Willis

Abstract

The Circle of Willis is a network of the major cerebral arteries in the brain, playing a key role in cerebral circulation. Considerable anatomical variations exist in its topology, with the complete network being observed in only about one-third of human population. Such topology variations are likely to influence cerebral hemodynamics and distribution of embolic particles that cause ischemic stroke. The correlation between these aspects has not been clearly established. Extraction of topology from medical image data is essential for such an effort. The objective here is to develop tools to enable rapid extraction of topology of the Circle of Willis vasculature from medical image data.

Methods

- CT scan data → CLAHE contrast adjustment → Processed in VTK → Composition → Analyze anatomy

- Is topology clearly displayed?
- How effective were the parameter inputs used?
- Are any parts of the Circle of Willis hypoplastic and/or missing compared to the ideal model?

Evaluation of Existing Tools

- Automated 3D Segmentation: ITK-Snap
 - Simple process, but difficult to capture a vessel’s entirety
 - Process takes approximately 2 hours
 - Enhanced contrast makes identification easier; however, image resolution is limited

- 2D Manual Segmentation: SimVascular
 - Moderately difficult
 - Control allows room for smoothness of model
 - Process takes approximately 3 hours
 - Enhanced contrast with CLAHE allows segmentation without any discontinuity

Results

Composition of Small to Large Vessel Extractions

- 18 datasets were processed using different parameters in CLAHE, assessed by post-processing in the VTK library, and composed together to create one image
- Geometry is more connected, but heavier noise
- Cleaning up operations (clip and threshold) used to decrease noise

Questions

- How well do the existing tools perform in generating topology information?
- How do the various parameters of the CLAHE algorithm affect the image data set?
- Does the composition of small to large vessel extractions aid the process of analyzing topology?

Conclusion

- The automated 3D segmentation and 2D manual segmentation methods were more difficult to use than expected, but improvements can be made upon pre-processing contrast enhancements and software development.
- This research took exploratory steps in a longer project that looks at the problem of anatomical information extraction from image-data rapidly.
- With the results and analysis, people in the lab will be able to implement the methods and tools utilized and build on this research in the future.

Acknowledgments

Special thanks to my mentor, Debanjan Mukherjee, for his guidance with my research. I also thank Jeffrey Pyne for collaborating with me in this research. I show gratitude to all those in the Shadden lab for support. Many thanks to Lea Marlor for managing the TTE REU program, and to Jeff Bokor for providing this research opportunity.

References

[1] http://cnx.org/resources/ad15123d0f8187d4d20f81af65608d7d0e82123_Arteries_of_the_Brain.jpg
[4] http://www.chw.org/~/media/Assets/MedicalCare/birthmarksandvascularanomalies/circle%20of%20willis.jpg