A Carnot Bound for General
Purpose Information Processors?

Sadasivan Shankar (Intel), Ralph K. Cavin Il
(SRC), Victor V. Zhirnov (SRC)

1st Berkeley Symposium on Energy Efficient
Electronic Systems

June 11 & 12, 2009, Berkeley, CA

- 1




Main Points

« Energy/Power minimization Is a universal macro-
constraint for on-chip architectures
— Performance should not (& does not have to) be sacrificed

« Many new directions to leverage scaling
— New materials, devices, topologies
— Functional diversification
* Power sources, capacitors
» Application-specific processors
 How is maximum computational performance related to
device physics?
— Architecture and software need consideration to enable scaling

=> Thermodynamics of Computation at System Level is a more
systematic way to leverage scaling

— A new methodology based on statistical physics and quantum
mechanics have been developed for addressing

thermodynamics of switching-based systems
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Outline

 What ?
— Basic goals
e Whydoit?
— Context of power versus MIPs
e How ?
— Methodology used in the analysis

e Where ?
— Utility
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Fundamental limits for information
engines?

The discipline of Thermodynamics
resulted from the practical need to
Increase the EFFICIENCY of heat

engines >
Carnot’s formula - the fundamental limits {

on engine’s efficiency
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System Reliability Perspectiveﬁ

o Current approach: System reliabllity
through device reliablility

— All N devices In the logic system operate
correctly E 7

e Requiring all ideal devices may not end
with ‘ideal’ system
— Locally optimized components may not result
In globally optimized system

_ Global system optimization: E 4 77
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Computing Engine Premise

Heat Engine

Heat Energy

Computing Engine

II-Heat Energy
Information
BIC D:>Digital Computationl:I

EM Energy

EM Energy
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e Similar to a heat engine, a computing engine
can be visualized
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Thermodyn

amics of Computationﬁ

@System Level

 Thermodynamics is the study of energy

transformation

e Goalistouset
Incorporates re

properties common to all systems
nermodynamics, which

ations between system’s

components and determines the most energy
efficient systems

EM Energy

I‘Heat Energy
B . Information
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Digital Computation:
[ —a putation.
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Previous Work
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Instructions per sec x106

Computing Power: MIPS (u) vs. Blﬁ

MIPS

(B)

Sources: The Intel Microprocessor Quick Reference Guide and
TSCP Benchmark Scores
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Computing Power: MIPS (u) vs. Blﬁ
(P)

Sources: The Intel Microprocessor Quick Reference Guide and
TSCP Benchmark Scores
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MPU Watt- MIPS relations E
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Observation

S

1) There appears to be a functional relationship between ultimate

technology capability defined as the maximum number of binary
transitions per unit time, £, and the millions of instructions executed

per section, x, executed by a processor:

k=107 and p=0.6

How can we (\%): K[ ¥

Increase MIPS?

2) There also appears to be a functional relationship between
electrical power consumption, and the millions of instructions
executed per section, x, executed by a processor:

k=0.43 and p=0.66

How can we (P)I k e P
decrease WATTS?

NA1 June 2009
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Turing-Heisenberg Rapprochementﬁ

Number of binary elements

= — >

Instructions per second Switching time {
a measure of computational |
capability on the processor

level

Binary Information
Throughput

S k p a measure of
/Ll - g computational capability

on device level

Werner Heisenberg  Ludwig Boltzmann

- Can computational thegry suggest new devices?
Stan Williams @ Nawe®orphic Forum 13




error
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[T, =exp(—=

We think that all devices operating in an
equilibrium with thermal environment are
governed by these relations, no matter

what state variables are chosen!
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“Boltzman constraint” on
minimum switching energy
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“Heisenberg constraints”
on device size and speed

h
X . =
"™ J2mkT In2
~1.5 nm B
S0 min =
Eb ~40 fs
£11 ‘O’
An energy barrier is neﬂjed to
preserve a binary state



CMOS scaling on track to obtain physicalﬁ
limits for electron devices

George Bourianoff / Intel

eLong way to go => challenges ahead; opportunities abound

-on: Why are we at 10,000 kgT ?
S. Shankar
11 June 2009




Binary switch abstraction: ﬁ
Generic floorplan and energetics

Generic Floorplan of a binary switch

-

S. Shankar
11 June 2009
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Two-well bit — Universal Device I\/Iodeﬁ

White spaces are required to provide

for isolation and interconnect

Optimum tiling
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Device density

1) Upper Bound

1
Nax = Q
2) IC (ITRS)
0 B 1
MPU (208.)2

17



More electrons means more energﬁ
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 We need a significant number of electrons for branched
communication between binary switches
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In the limits: Energy per ﬁ
Interconnect tile
|

N

ankar
» 2009
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between Binary Switches

Assumption: For each of 3 tiles of Binary Switch we need at least:

One contacting interconnect tile (3 total) and one connecting

interconnect tile (3 total) Total 6 interconnect tiles

per binary switch
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Digital circuit abstraction:
Generic floor plan, energetics and speed

Switching energy of one binary switch in a circuit

_| 3 switch tiles

E.,=3E,+6E,=9K,TIn2

6 wire tiles

n binary switches:
(50% activity)

Operational energy of a circuit of

=

0 =%nkBT In 2

Areaqin =N .8a%

Joyner tiling

Switching delay of one binary switch in a circuit:

Speed: 7, /tile

7 S._Shankar
_ Tmin ~ kT In2| —40 fs |me 2009

tSW:9 Cmin
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1-bit ALU example — simple Bl
Turing Machine model

Z

Input Data

ALU

Output Data

Instructions

Cy

The minimal ALU does 22=4 operations on two 1-bit X and Y:

Operation 1: X AND Y
Operation 2: XOR Y
Operation 3: (X+Y)

11 June 2009

Jan Rabaey,

Digital Integrated Circuits
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Minimal ALU abstraction: E

Energetics
EALU Z%QSkBT |n2 ~ BOOkBT

Energy efficiency:|n = EOp ° 33
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Current Work: System Layout

Expression of Computing System
In a Geometrical Representation




Binary Switch - Basics 33C

a
<“——>»

Key Characteristics:
1. Confinement (Energy)
2. Barrier (Energy)
3. Information carrier (Charge)

Geometrical Parameters:
1. Confinement Width (W) &
W Length (L)
2. Barrier Length (a)
3. Information carrier (Charge)

System Parameters:
1. Barrier Energy (Eb)
2. Temperature T
3. Charge (e)

S. Shankar
11 June 2009 25




Binary Switch — Floor Plan E

W
< >
L a L
I I I
White spaces are required to
provide for isolation and
interconnect
=
D
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Floor Planning Examples E

N

1 Switch

2 Switches

itches
S. Shankar 12 Switches ”7
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Floor Planning Examples E

Density
Examples | Ngg | Nip | Neepw |Niw | @ n = 1
aa’
1-S 3 1 1 1 8
2-S ) 1 1 1 12
Upper Bound
4-S 3 2 3 1 20
7-S 5 1 |3 1 24 n L
max — 2
12-S 5 1 |5 1 36 8a
1
n IC (ITRS)

B (Neett —w+ Ni—w)(Neeti -+ Ni—L)a’
1

N =
MPU (20a)2
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Logical Switches - lllustration E
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NAND - 3 switches
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Floor Planning Examples - Densitﬁ

Examples | Neg [ Nip | Negpw |[Niw |o n = 1
aa’
Inverter 5 1 1 1 12
NOR 5 1 |3 1 24
Upper Bound:
NAND 7 1 |1 1 16 Inverter
6-T SRAM |7 1 |5 1 48 1
N =
max 12a2
» Reflects the principle of floor planning Lower Bound:
e Actual Layout may have other 6-T SRAM
considerations 1
o = 2gat

S. Shankar
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Current Work: System
Thermodynamics

Mapping the Geometrical
Representation to a
hermodynamic System

31



Thermodynamics of Computing E

Basic Premise
e Switches are operating at Macro-system
guantum limits, while the
macro-system is —
thermodynamic

 Macro-system is in thermal 1u

equilibrium with surroundings
(canonical ensemble)

e Micro-systems (multi-switch
systems; NAND etc..) are sub-
domains which can be
thermodynamically represented
by average energy

* Probability determined by
operating “NITS” (NIT =2 is

icro-systems

M

Switch Micro-system

11 June 2009




Energy

i

NIT Switching Energy

ES
E, +2E,

E1 +E, Es
E1
1 3 g

Nature of NIT

N |T Switching
Binary
Ternary
Quarternary
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Ensemble — Micro System E

E

'S

E

S
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Basic Equations

System Entropy

S =—ksY, PiLogP:

Equation
Probability
Energy of a quantum device
e—Ei IkgT
P = . 2(nZ +n; +n7)(h*/ 4)
i 2
Z 2melectrona
N
7 — Z g e—Ei/kBT D - Linear Dimension of the System
i g, - Statistical weight of each of the micro-
system
E, — Energy is estimated from quantum
mechanics
System Free energy N — energy states

A — E . TS ‘ Z — Partition function
S. Shankar
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Entropy of a Single Switch System

* Entropy Is determined by statistical mechanics

S = E.(Nit—1)+k,N InZ +k, In Nit

1 1 A

N
T

Switching state

E.
|

Quantum States

Switching Energy
Total energy

S. Shankar
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Nit — Nit = 2 is bit, Nit =4 is
qit etc....

Kg .Boltzmann constant

N — number of states in the
system (1 for single state
switching)

Et — Total Energy is
estimated from statistical
mechanics

Z — Partition function

36



Simple lllustration

* For a binary switch, the minimum energy is determined
by the need to maintain binary transition (bit) and energy

of the particle in an isolated level
e For a classical switch, the following are the limits

Example Micro- Bits N P, Ewvin
Systems

Binary 1 D?/8a? 1/2N KT log 2
Inverter 1 D2/12a2 | 1/2N KT log 2
NOR 2 D2?/24a2 | 1/4N 2kT log 2
NAND 2 D2/16a2 | 1/4N 2KT log 2
6-T SRAM 16 D2/48a% | 1/216N 16kT log 2

* E,, IS idealistic and is determined by the bits processed

-e micro-systems

S. Shankar

11 June 2009
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Summary

 We have developed a general methodology for applying
thermodynamic principles for information engines like the Carnot
principle to heat engines

— More fundamental than simplistic capacitance based formalism currently
being used

 Two applications

— Similar to heat engines, will identify the ideal Compute Engine -
Carnot's Compute Engine for ideal computing. This would serve as a
limiting case for realistic architectures

— Evaluate theoretical efficiencies for different architectures based on
physics
* Lessons from Biological Computation

— the brain appears to operate at a device switching energy of a few
hundred KT

« Continue work on estimating minimum energy needed of various
simple systems

— Include realistic heat terms (dissipation)
e Estimate available energy

S. Shankar
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