

1

A Carnot Bound for General Purpose Information Processors?

Sadasivan Shankar (Intel), Ralph K. Cavin III (SRC), Victor V. Zhirnov (SRC)

1st Berkeley Symposium on Energy Efficient Electronic Systems June 11 & 12, 2009, Berkeley, CA

Main Points

- Energy/Power minimization is a universal macroconstraint for on-chip architectures
 - Performance should not (& does not have to) be sacrificed
- Many new directions to leverage scaling
 - New materials, devices, topologies
 - Functional diversification
 - Power sources, capacitors
 - Application-specific processors
- How is maximum computational performance related to device physics?
 - Architecture and software need consideration to enable scaling
 Thermodynamics of Computation at System Level is a more systematic way to leverage scaling
 - A new methodology based on statistical physics and quantum mechanics have been developed for addressing thermodynamics of switching-based systems

Outline

- What ?
 - Basic goals
- Why do it ?
 - Context of power versus MIPs
- How ?
 - Methodology used in the analysis
- Where ?
 - Utility

System Reliability Perspectives

- Current approach: System reliability through device reliability
 - All N devices in the logic system operate correctly E_b?
- Requiring all ideal devices may not end with 'ideal' system
 - Locally optimized components may not result in globally optimized system

S. Shankar 11 June 2009

• Similar to a heat engine, a computing engine can be visualized

Thermodynamics of Computation כאל @System Level

- Thermodynamics is the study of energy transformation properties common to all systems
- Goal is to use thermodynamics, which incorporates relations between system's components and determines the most energy efficient systems

Previous Work

Acknowledgement: V. Zhirnov, R. Cavin

Computing Power: MIPS (μ) vs. BI

Sources: The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores

Computing Power: MIPS (μ) vs. BI

Sources: The Intel Microprocessor Quick Reference Guide and TSCP Benchmark Scores

Instructions per sec ×106

MPU Watt- MIPS relations

Observations

1) There appears to be a functional relationship between ultimate technology capability defined as the maximum number of binary transitions per unit time, β , and the millions of instructions executed per section, μ , executed by a processor:

How can we increase MIPS?

$$\mu = k\beta^p$$

k=10⁻⁷ and *p*=0.6

2) There also appears to be a functional relationship between electrical power consumption, and the millions of instructions executed per section, μ , executed by a processor:

$$P = k \cdot \mu^p$$

2

Turing-Heisenberg Rapprochement

Werner Heisenberg

Ludwig Boltzmann

Can computational theory suggest new devices? Stan Williams @ Nanomorphic Forum 13

CMOS scaling on track to obtain physical limits for electron devices

Long way to go => challenges ahead; opportunities abound

15

Binary switch abstraction: Generic floorplan and energetics

S. Shankar 11 June 2009

16

16

Two-well bit – Universal Device Mode

White spaces are required to provide for isolation and interconnect

More electrons means more energy

• We need a significant number of electrons for branched communication between binary switches

In the limits: Energy per interconnect tile

SR

Floor space Expenses of Communication between Binary Switches

Assumption: For each of 3 tiles of Binary Switch we need at least:

One contacting interconnect tile (3 total) and one connecting interconnect tile (3 total) Total 6 interconnect tiles

Digital circuit abstraction: Generic floor plan, energetics and speed

$$Area_{\min} = n \cdot 8a$$

Joyner tiling

Switching delay of one binary switch in a circuit:

Speed: τ_{min} /tile S. Shankar ine 2009

$$t_{\rm sw}=9\,\tau_{min}$$

1-bit ALU example – simple Turing Machine model

The minimal ALU does 2²=4 operations on two 1-bit X and Y: Operation 1: X AND Y Operation 2: X OR Y Operation 3: (X+Y) Operation 4: (X+(NOT Y)) S. Shankar 11 June 2009

Current Work: System Layout

Expression of Computing System in a Geometrical Representation

Binary Switch - Basics

Key Characteristics:

- 1. Confinement (Energy)
- 2. Barrier (Energy)
- 3. Information carrier (Charge)

Geometrical Parameters:

- 1. Confinement Width (W) & Length (L)
- 2. Barrier Length (a)
- 3. Information carrier (Charge)

System Parameters:

- 1. Barrier Energy (Eb)
- 2. Temperature T
- 3. Charge (e)

S. Shankar 11 June 2009

Binary Switch – Floor Plan

Floor Planning Examples

1 Switch

2 Switches

S. Shankar 11 June 2009 7 Switches

12 Switches

27

Floor Planning Examples Density

$$n = \frac{1}{\alpha a^2}$$

SSC

Upper Bound

$$n_{\rm max} = \frac{1}{8a^2}$$

IC (ITRS)

$$n_{MPU} = \frac{1}{\left(20a\right)^2}$$

28

Floor Planning Examples - Densiting

Examples	N _{cell-L}	N _{i-L}	N _{cell-W}	N _{i-W}	α
Inverter	5	1	1	1	12
NOR	5	1	3	1	24
NAND	7	1	1	1	16
6-T SRAM	7	1	5	1	48

- Reflects the principle of floor planning
- Actual Layout may have other considerations

$$n = \frac{1}{\alpha a^2}$$

Upper Bound: Inverter

$$n_{\max} = \frac{1}{12a^2}$$

Lower Bound: 6-T SRAM

$$n_{MPU} = \frac{1}{48a^2}$$

Current Work: System Thermodynamics

Mapping the Geometrical Representation to a Thermodynamic System

Thermodynamics of Computing **Basic Premise**

- Switches are operating at quantum limits, while the macro-system is thermodynamic
- Macro-system is in thermal • equilibrium with surroundings
- equilibrium with surroundings (canonical ensemble) Micro-systems (multi-switch systems; NAND etc..) are sub-domains which can be thermodynamically represented by average energy
- Probability determined by operating "NITS" (NIT =2 is bit)

SRC

11 June 2009

Ensemble – Micro System

Basic Equations

System Entropy

$$S = -k_B \sum_{i}^{N} P_i Log P_i$$

Probability

$$P_{i} = \frac{e^{-E_{i}/k_{B}T}}{Z}$$
$$Z = \sum^{N} g_{i} e^{-E_{i}/k_{B}T}$$

Equation

Energy of a quantum device

$$E_{i} = \frac{2(n_{x}^{2} + n_{y}^{2} + n_{z}^{2})(h^{2}/4)}{2m_{electron}a^{2}}$$

- D Linear Dimension of the System g_i - Statistical weight of each of the microsystem
- *E_i Energy is estimated from quantum mechanics*
- N energy states
- Z Partition function

S. Shankar 11 June 2009

Entropy of a Single Switch System

• Entropy is determined by statistical mechanics

Simple Illustration

- For a binary switch, the minimum energy is determined by the need to maintain binary transition (bit) and energy of the particle in an isolated level
- For a classical switch, the following are the limits

Example Micro- Systems	Bits	N	P _i	E _{Min}
Binary	1	D ² /8a ²	1/2 ^N	kT log 2
Inverter	1	D ² /12a ²	1/2 ^N	kT log 2
NOR	2	D ² /24a ²	1/4 ^N	2kT log 2
NAND	2	D ² /16a ²	1/4 ^N	2kT log 2
6-T SRAM	16	D ² /48a ²	1/2 ^{16N}	16kT log 2

• E_{Min} is idealistic and is determined by the bits processed

- We have developed a general methodology for applying thermodynamic principles for information engines like the Carnot principle to heat engines
 - More fundamental than simplistic capacitance based formalism currently being used
- Two applications
 - Similar to heat engines, will identify the ideal Compute Engine Carnot's Compute Engine for ideal computing. This would serve as a limiting case for realistic architectures
 - Evaluate theoretical efficiencies for different architectures based on physics
- Lessons from Biological Computation
 - the brain appears to operate at a device switching energy of a few hundred kT
- Continue work on estimating minimum energy needed of various simple systems
 - Include realistic heat terms (dissipation)
- Estimate available energy

