Germanium Vertical Field Effect Transistor

Robert Nguyen¹, Kimihiko Kato², and Tsu-Jae King Liu²

¹Chabot College, Department of Science and Math

²University of California, Berkeley, Department of Electrical Engineering and Computer Science

2015 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract — To increase the density of transistors on an integrated-circuit “chip” without further scaling down the transistor gate length, a vertically oriented germanium-channel field-effect transistor (Ge-vFET) design is proposed. Technology computer-aided design (TCAD) simulations of Ge-vFET devices indicate that a high on-off current ratio, up to 7 orders of magnitude, can be achieved if the gate-length (L_g) to channel width ($W_{channel}$) ratio is sufficiently large. The optimal dopant concentration for this junctionless FET design is found to be $\sim 10^{17}$ cm$^{-3}$.

Introduction

- Parasitic resistances & capacitances become increasingly significant when conventional planar metal-oxide-silicon field-effect transistors (MOSFET) are miniaturized for high device density
- Higher density can be achieved by vertically orienting the FETs, without the need to reduce gate length (L_g) or gate-to-contact spacing (L_c)

Ge-vFET Fabrication Process

- On-state current (I_{ON}) and on/off current ratio improve with increased $L_g/W_{channel}$ ratio
- Spacer thickness should be optimized for maximum on/off current ratio
- The optimal channel dopant concentration is $\sim 10^{17}$ cm$^{-3}$

Cross-sectional views illustrating the Ge-vFET fabrication process:

1. Initial spacer/poly-Si gate/spacer layer formation over doped Si substrate
2. Sub-lithographic hole/trench definition using self-aligned sidewall spacers
3. Channel hole/trench formation
4. Gate dielectric formation by thermal oxidation
5. Selective Ge growth in hole/trench, followed by contact hole formation and metallization

Ge-vFET Simulation Results

- Measurements of fabricated Ge vFET I-V characteristics were made using a Cascade wafer-probe station
- Technology computer-aided design software, Sentaurus Device, was used to simulate Ge-vFET I-V characteristics to guide design optimization

References:

Conclusions

Ge-vFETs potentially can achieve good performance characteristics with a smaller footprint than conventional planar MOSFETs.

Practical challenges for realizing the promise of Ge-vFET technology include the formation of high-quality Ge in nanometer-scale trenches and holes, and the formation of a high-quality gate insulating layer.

Acknowledgments: The lead author would like to thank Dr. Kimihiko Kato and Professor Tsu-Jae King Liu for this opportunity to explore semiconductor device technology.

Contact Information:

- rob0726@gmail.com
- (510) 648-6992
- Financial Support: This work was funded by National Science Foundation Awards ECCS-0939514 & ECCS-1157089 & ECCS-1461157.