

2015 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract — To increase the density of transistors on an integrated-circuit "chip" without further scaling down the transistor gate length, a vertically oriented germaniumchannel field-effect transistor (Ge-vFET) design is proposed. Technology computer-aided design (TCAD) simulations of Ge-vFET devices indicate that a high on-off current ratio, up to 7 orders of magnitude, can be achieved if the gate-length (L_{α}) to channel width ($W_{channel}$) ratio is sufficiently large. The optimal dopant concentration for this junctionless FET design is found to be $\sim 10^{17}$ cm⁻³.

Introduction

- Parasitic resistances & capacitances become increasingly significant when conventional planar metal-oxidesemiconductor field-effect transistors (MOSFET) are miniaturized for high device density
- Higher density can be achieved by vertically orienting the FETs, without the need to reduce gate length (L_{α}) or gate-tocontact spacing (L_s)

Experimental Procedures

- Measurements of fabricated Ge vFET *I-V* characteristics were made using a Cascade wafer-probe station
- Technology computer-aided design software, Sentaurus Device, was used to simulate Ge-vFET *I-V* characteristics to guide design optimization

Germanium Vertical Field Effect Transistor

Robert Nguyen¹, Kimihiko Kato², and Tsu-Jae King Liu² ¹Chabot College, Department of Science and Math ²University of California, Berkeley, Department of Electrical Engineering and Computer Science

References:

- [1] K. J. Kuhn, "Considerations for Ultimate CMOS Scaling," *IEEE* Transactions on Electron Devices, Vol. 59, pp. 1813-1828, 2012.
- Colinge, J.-P. "Junctionless transistors", Future of Electron Devices, [2] Kansai (IMFEDK), 2012 IEEE International Meeting, pp. 1-2, 2012.

Contact Information: rob0726@gmail.com (510) 648-6992

This work was funded by National Science Foundation Awards ECCS-0939514 & ECCS-1157089 & ECCS-1461157.

