

Materials and Components With a Negative Frequency Derivative of Reactance

Dan Sievenpiper^{*}, Minu Jacob, Jiang Long University of Califorina, San Diego

Outline

- Practical and performance limitations of metamaterials
- Limitations on small antenna performance
- Foster's theoreom, and "non-Foster" circuits
- Applications of non-Foster circuits
 - Matching circuits for small antennas
 - Broadband parasitic arrays
 - Superluminal propagation
 - Broadband leaky wave antennas
 - Electrically thin cloaking surfaces
- History and theory of negative impedance converters
- Measured negative inductors and negative capacitors
- Summary and future directions

Practical and Performance Limitations on Metamaterials and Their Applications

Typical Negative Effective Permeability Based on resonance

Thick Volumetric Cloaking Structure

Complex 3D Structures Are Difficult to Build

Alternative: Thin Coating for Surface Wave Cloaking

- Negative index metamaterails are typically narrowband and lossy
- 3D metamaterials are difficult to build, and are impractical for many applications

Active vs. Passive Circuits, Antennas, Metamaterials, and Other Structures

	Passive	Active
Electronics	 Includes just L, R, C 	 Includes transistors, diodes, feedback, logic circuits, etc.
Antennas etc.	 Rely on LC resonance to create effective medium Limited bandwidth 	 Can include an types of active circuits listed above for a wide range of potential effects Can achieve broad bandwidth using active circuits to tailor group delay or tune the material
	 Prohibitively lossy Can't surpass fundamental limits of passive structures (e.g. Wheeler/Chu limit) 	 response Can include distributed amplification to overcome loss Posses new kinds of behavior (e.g. superluminal propagation, nonlinear absorption) not possible with passive structures

- Adding active electronics can enable many of the goals for metamaterials
- Can also enable new behavior that is impossible with passive structures

Foster's Reactance Theorem and Active "Non-Foster" Circuits

5

Wheeler/Chu Limit on Antenna Q and Bandwidth vs. Electrical Size

Small antenna cannot exceed bandwidth determined by its electrical size, ka

Measured Performance of All Measured Data on Small Antennas in IEEE T-AP

- Wheeler/Chu limit for small antennas is verified by decades of measured data
- Friedman's (similar to Goubau's) is unmatched antenna see Bode/Fano limit.

Measured Broadband Non-Foster Matching of Electrically Small Antennas

Two examples of matching a small monopole antenna with a negative capacitor: (Not enough just to show good match, must show improved performance!)

S. Sussman-Fort, R. Rudish, 2009

Non-Foster circuit gives higher signal/noise ratio for small monopole antenna over 20-80 MHz compared to unmatched or lossy match.

S. Stearns, 2011

Noise Floor Improvement Negative Capacitor on Short Monopole

Non-Foster circuit gives lower measured noise floor for a small monopole antenna compared to a preamplifier, over 15-28 MHz

- Non-Foster matching can allow small antennas that exceed Wheeler/Chu limit
- Measurements show broadband improvement in SNR or noise floor

Broadband Non-Foster Matching of an Electrically Small Loop Antenna

The bandwidth is increased to 2.9 times the passive Wheeler/Chu limit

Non-Foster Loading for Broadband Parasitic Antenna Arrays

Yagi-Uda Antenna

EAPAR (Electronically Steerable Passive Array Radiator) Antenna

6 GHz

-1.0

-0.5

1.0

0.5

Two-Element Array with Tunable -L-C Circuit Loading the Parasitic Element

Broadband steerable pattern, bandwidth limited by antenna element

Leaky Wave Antennas, Phase Matching, and Superluminal Leaky Waves

Fast wave enables squint-free (frequency independent) leaky wave antennas

Non-Foster Loaded Waveguides for Superluminal Propagation

Phase Matching in Leaky Wave Antennas

Dielectric layer with 0<e<1

Implementation with Non-Foster Circuits

Fast-Wave Guiding Structure

Broadband Steerable Antenna Has Constant Pattern over 1-10 GHz

• Steerable leaky wave radiation has constand angle over 10:1 bandwidth

Effects of Causality in Superluminal Waveguides and Antennas

- Causality results in signal delay spread of across the surface
- Pulses (or symbols) shorter than a minimum time width will be distorted, resulting in bandwidth limitation
- All frequency components still radiate to the same angle
- May be possible to compensate for delay spread with OFDM

Conventional Phased Array Antenna

Non-Foster Loaded Leaky Wave Antenna

- Superluminal waveguide does not violate causality
- **Causality-induced bandwidth limitation depends on antenna geometry**

Next Steps and Future Directions for Superluminal Waveguides and Surfaces

Prior Work – Wave Wraps Around Cylinder

Extend to 2D Surface

Non-Foster Based Thin, Broadband Cloak

History, and Understanding How Negative Impedance Converter Circuits Work

Bell Telephone E2 Repeater

- Negative impedance converter produces negative resistance
- Bidirectional amplifier in telephone lines
- Implemented in vacuum tubes, 1950's

- Transistor version of similar circuit to E2 (1953)
- OCS at emitter terminals
- SCS at collectors/bases
- At least 10 NIC/NII circuits published so far, but all are same basic concept

Simple Circuit Example

- Voltage follows red path (V_{BE})
- Current follows blue path (I_{CE})
- π phase shift in V/I
- Impedance seen across emitter terminals is -Z
- Negative impedance converters have been designed and used for decades
- Issues are stability & high frequency operation (UHF in discretes, GHz in ASICs)

Universal NIC/NII Board for building any OCS/SCS, Fixed/Tunable, -L/-C Circuit

- Initial deisgns did not match measurements at all
 - Had to include all parasitics, circuit board, component resonances
- Each new design required new board to be simulated
 - Came up with universal design that can work for all non-Foster circuits

• Requires full EM simulation of board, and all component parasitics

Successful Measurement of Negative Inductor Circuit in UHF Range

• Non-Foster circuits can be implemented in UHF range with discrete components

Tunable Negative Inductor, and Floating Negative Inductor

-65 nH to -30 nH for 5 V to 25 V tuning

Floating NIC Schematic and Circuit Board

Simulated Floating -62 nH Inductor

Measured Tunable Negative Capacitor

Circuit Board EM Simulation

Fabricated Circuit

Tunable Negative Capacitor Schematic

Measured Tunable Negative Capacitor

Summary and Future Directions

- If we only rearrange metals and dielectrics, we will not exceed the performance of today's materials, antennas, etc.
- Integrating active electronics into electromagnetic structures can allow new behavior that is impossible with passive structures (superluminal propagation, exceed Wheeler/Chu, etc.)
- Non-Foster circuits have been successfully built and measured
- Next step: Integration of active circuits with EM structures

