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Methods and Results

Figure 6. Identification of palmitoylated ERAD proteins. A-F) Affinity purified proteins from cells incubated in the 
presence or absence of 17-ODYA were reacted with a rhodamine moiety to enable detection of palmitoylation. Complexes were 
also incubated with hydroxylamine (HAM) to remove the thioester-linked palmitate group and confirm specificity of the signal. 
Proteins were separated by SDS-PAGE and gels scanned for fluorescence to detect the reporter or analyzed by Western blotting 
to detect the affinity purified protein. DFP is a non-fluorescent GFP variant used as a negative control, and calnexin is used as 
a positive control. 

Figure 9. The palmitoylation inhibitor 2-BP impairs CD147 degradation. 
A) Cells were pretreated for 16hr with 2-bromopalmitate (2-BP) and the degradation 
kinetics of CD147 analyzed by immunoblotting. B) CD147 levels were quantified using 
ImageJ and plotted.
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Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cellular process responsible for the identification 
and degradation of misfolded proteins. Defining the mechanisms underlying this process is vital to understanding the 
pathogenesis of numerous human diseases that result from impaired ER protein quality control. Recent reports 
indicate that the inhibition of acyl-CoA synthetases with small molecule, triacsin c disrupts ERAD. However, it remains 
unknown why acyl-CoA synthetases are required for ERAD. Palmitoylation, the covalent addition of the fatty acid 
palmitate to a protein, requires acyl-CoA synthetase activity and can significantly impact protein localization, structure, 
and physical interactions. Therefore, we hypothesized that palmitoylation of ERAD machinery regulates the 
identification and degradation of ERAD substrates. To test this hypothesis, we employed copper-catalyzed 
azide-alkyne cycloaddition to probe for palmitoylated ERAD proteins. Our results reveal palmitoylation of four 
prominent ERAD proteins: the E2-recruitment factor AUP1, the E3 ligase Hrd1, the rhomboid pseudoprotease Derlin1, 
and the mannosidase ERMan1, indicating that palmitoylation may regulate ERAD at multiple steps. Consistent with a 
functional role for palmitoylation in ERAD, we find that treatment the palmitoylation inhibitor 2-bromopalmitate 
significantly attenuated ERAD. Together, our results identify an unprecedented mechanism of ERAD regulation that 
will broadly impact our understanding of ERAD-associated diseases.

Inhibition of long chain acyl-CoA synthetases impairs the glycan trimming step of ERAD

ERMan1, AUP1, Hrd1, and Derlin1 are palmitoylated ERAD proteins

Palmitoylation is required for efficient ERAD
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Figure 2. The long chain acyl-CoA synthetase inhibitor triacsin c 
impairs CD147 degradation. A) CD147 degradation kinetics were analyzed by 
immunoblotting following a 16-hr triacsin c pretreatment . B) CD147 levels in panel (A) were 
quantified using ImageJ and plotted.
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Figure 3. Triacsin c impairs glycan trimming. Immunoblot analysis of CD147 
degradation in cells pretreated for 16 hr. with triacsin c or cotreated with the mannosidase 
inhibitor kifunensine.

Fatty acid modification of ERAD factors regulates ER protein quality 
control.
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Figure 1. Representation of Endoplasmic Reticulum-Associated
Degradation (ERAD). The four major steps of ERAD are: recognition of misfolded
proteins’ trimmed glycans by ER resident sugar-binding lectins and chaperones; substrate 
dislocation across the ER lipid bilayer presumably through a proteinaceous pore; polyubiq-
uitination by E3 ubiquitin ligases; and degradation by the 26S proteasome in the cytoplasm. 

Future Directions
Continue to probe for palmitoylation of ERAD proteins

Elucidate the role of palmitoylation in ERAD

Create mutated, palmitoylation-defective forms of ERMan1, AUP1, Hrd1, and Derlin1
and track degradation of CD147

Use fluorescence microscopy to localize palmitoylated and mutated, palmitoylation-
defective ERAD proteins
Analyze the protein complexes formed by palmitoylation-defective mutants
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Figure 7. ERMan1 is palmitoylated at 
cysteine-71. A) ERMan1 domain structure. 
Cysteine residues are indicated. B) ERMan1-S 
WT and cysteine mutants were affinity purified 
from cells incubated with 17-ODYA and 
palmitoylation was detected using click 
chemistry. Asterisk indicates nonspecific band.

Figure 8. ERMan1 palmitoylation is impaired by triacsin c 
and 2-BP treatment. A) Illustration of our hypothesis that triacsin and 
2-BP inhibit ERMan1 palmitoylation. B) ERMan1-S was affinity purified 
from cells incubated with 17-ODYA and the indicated inhibitors. 
Palmitoylation was detected by reaction wtih a rhodamine moiety. C) The 
levels of palmitoylated ERMan1 in panel (B) were quantified using ImageJ 
and plotted.
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Figure 5. Schematic of the click chemistry method used to detect palmitoylation. A) Cells were
pretreated for 8 hr with 17-octadecynoic acid (17-ODYA), an alkyne-containing palmitate analog. B) Affinity purified S-tagged
proteins were reacted with the fluorescent azide-rhodamine reporter via copper-catalyzed azide-alkyne cycloaddition.
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Figure 4. Schematic of the pathways affected by triacsin c. Triacsin c 
inhibits long chain acyl-CoA synthetases (ACSLs), which are required for the activation of 
fatty acids that are employed for protein acylation, β-oxidation, and lipid biosynthesis.
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Create ERMan1, AUP1, Hrd1, and Derlin1 knockout cell lines using CRISPR/Cas9 to 
verify ERAD defect and for use in future degradation rescue studies 
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