EXPLORING THE BOUNDARIES OF ULTRA-LOW POWER DESIGN - MICROSCOPIC WIRELESS

Jan M. Rabaey
Donald O. Pederson Distinguished Prof.
University of California at Berkeley

BERKELEY ENERGY SYMPOSIUM
JUNE 11, 2009
The Sensory Swarm

“Adding senses to the Internet”

Trillions of connected devices

Infrastructural core

Sensory swarm

Mobile access

The driver for Ultra-Low Energy design over past years

UCB PicoCube

Philips Sand module

UCB mm³ radio
Yet ... True Immersion Still Out of Reach

Microscopic Wireless: $< \text{mm}^3$, $< 1 \mu\text{W}$

Artificial Skin

Interactive Surfaces

Smart Objects

“Microscopic” Health Monitoring

Another leap in size, cost and energy reduction
Example: Microscopic Wireless to Power Brain-Machine Interfaces (BMI)

The Age of Neuroscience

BMI – The Instrumentation of Neuroscience
- Learning about operation of the brain
- Enabling advanced prosthetics
- Enabling innovative human-machine interfaces

mm3 nodes remotely powered uWs to 1 mW power budget
Why Is This SO Interesting?

Microscopic wireless technologies to have profound impact on information processing and communication for decades to come.

- Traditional scaling rules to have minor impact
- Scaling is in the number of components, not in the transistor sizes
- A path to “More Than Moore” or “Beyond Moore”

[H. De Man, Keynote Address, ISSCC 2005]
The Holy Grail: Reducing the Energy/Operation

- Communication
- Digital Processing
- Data Acquisition
The Holy Grail: Reducing the Energy/Operation Communications Power harvesting, storage and distribution

Communications
Digital Processing
Data Acquisition

Wireless communication dominant factor

Primary Challenge: Improving TX Efficiency & Combatting Overhead
Short Distance Wireless Communication

The Achievable Bounds are well Known

Ideal link: Modulation achieves Shannon capacity, noiseless zero power RX, ideal TX (100% efficiency).

Minimum energy/bit (infinite bandwidth) = \(kT \ln 2 \times \text{Link Budget} \)

Works well for long distance links, somewhat irrelevant for short distances
Short Distance Wireless Communication

The Reality – State of the Art

Example 1: [Chee06 TX, Pletcher 08 RX] Low sensitivity ULP receiver

\[\frac{\text{Link margin} \times kT \ln 2}{(P_{Tx} + P_{Rx}) / R} \]

\[= \frac{72 \text{db} \times 2.9e-21}{1.05 \text{mW}/100e3} \]

\[= -53.6 \text{ dB} \]

Example 2: [Chee06 TX, Otis 05 RX] High sensitivity Low-rate receiver

\[\frac{\text{Link margin} \times kT \ln 2}{(P_{Tx} + P_{Rx}) / R} \]

\[= \frac{100 \text{db} \times 2.9e-21}{1.55 \text{mW}/5e3} \]

\[= -40.3 \text{ dB} \]

Transmitter inefficiency and receiver overhead dominate

Observe: This assumes perfect synchronization between TX and RX

This is far from the case in typical sensor applications

[After analysis by B. Cook, PhD, UCB]
Creativity: Combining passive components with technology scaling

Example:
50 µW 100 kbit/sec receiver

BAW resonator (FBAR) provides frequency selectivity

Enables usage of inaccurate ring oscillator as mixer (scales with technology)

0.5V VDD
-72 dBm sensitivity

[N. Pletcher, ISSCC’08]
The Opportunity

- Sensing applications are largely asymmetrical
 - Tx is what matters!

The Lure of Pulse-Based Communications:
Higher TX efficiency + Duty Cycling

[Courtesy: S. Gambini, UCB]
Pulse-Based Communication

- Highly efficient transmitter – reduced overhead
- Energy efficiency set by timing accuracy
 - improved by technology scaling
- Make receiver chain as simple as possible – augment using digital tuning

1 Mbit/sec
1-5 cm distance
6 GHz carrier
25pJ/100pJ TX/RX
Revisiting the Opportunity

- Most sensing applications are asymmetrical
 - Tx is what matters!

Pulse-Based TX
- Scales with technology
- Ideal duty cycling
- Needs power source

Reflective (RFID)
- Zero-power
- Very low sensitivity
- Low data rates

Reflective Impulse
- Best of both worlds
The Holy Grail: Reducing the Energy/Operation

Primary Challenge: Improving TX Efficiency & Combating Overhead
Energy Limits in Digital

Shannon-Von Neumann-Landauer Bound:

Minimum energy/operation = $kT \ln(2)$

= 4×10^{-21} J/bit at room temperature

More than 4 orders of magnitude below current practice (65 nm at 1V)
Technology Scaling Not the Solution

[Based on actual and predictive models]
Lowering Supply Voltage Only Option

(recoup performance through parallelism)

BUT: CMOS Has Minimum Energy Point Set by Leakage

![Graph showing energy vs. VDD (V)].

- Energy (norm.)
- V_DD (V)

Legend:
- **Total**
- **Switching**
- **Leakage**

0.3V, 12x
Sub-Threshold Operation Leads to Minimum Energy/Operation

Energy-Aware FFT Processor
[Chang, Chandrakasan, 2004]

But at a huge cost in performance and variability

Subliminal µprocessor for retinal implants
3 pJ/inst @ 350 mV
[Blaauw, VLSI’07]
Back off a Little: Design in the VTH + ΔV Space

[H. Kaul et al, ISSCC08]

Challenges: Modeling, Variability
Leakage-Insensitive Logic?

Low VT Pass Transistors

SAPTL
[Alarcon, 07]

Logic: Moderate Inversion
Driver and SA: Subthreshold

High VT Transistors

Minimal impact on leakage when reducing VTH
How About Mechanical Computing?

NEMS Relay

Energy/op vs. Delay/op across V_{dd}

[Courtesy: TJ King, E. Alon, UCB]
The Holy Grail: Reducing the Energy/Operation

Microscopic Systems need more than digital

Challenge: Even harder to scale voltage
The Limits of Low-Voltage Signal Conversion

Voltage reduction limited by noise (high accuracy) or matching considerations (low accuracy)

Innovative architectures explore minimization of “active analog”

14 µW 0.5 V 1.5 MS/s 6 bit SAR 120 fJ / Conversion Step

[S. Gambini, ‘07]
Mostly Digital ADC’s

Example: Pipelined converter
On track to 20 fJ/conversion step

Charged-based bucket brigade pipeline \textit{without} usual gain-boost amp, \textit{with} new digital correction

[Courtesy: B. Murmann, Stanford]
Avoiding Transistors Altogether?

Revisiting the NEMS Relay

Flash Analog-Digital Converter

- $V_{core} = 0.3V$
- $C = 500fF$
- $R = 4k\Omega$
- $V_{REF} = 1V$
- $f_{samp} = 10\ MS/s$

6-bit res: 5.5fJ/conv

[Courtesy: E. Alon ‘09]
How about a NEMS Spectrum Analyzer?

60 MHz
Q = 48,000

1.2 GHz
Q = 14,600

1.5 GHz
Q = 11,555

1mm² = roughly 2000 resonators
Assume 100 μW / analog channel

Mechanical-Analog wins for low resolutions

[Spectrum analysis @ 1 GHz with N bins]
An Extreme Perspective – Combining Passive Sensing and Communication

Immersed neural activity sensor: Potassium-modulated resonator

 Powered and interrogated by array of Ultra low-power wireless transceivers

[Courtesy: M. Maharbiz, UCB]
Some Reflections ...

- For information-technology revolution to go forward, further scaling of energy per operation essential
- Plenty of room for innovative architectures and computational paradigms
- But ... Potential of CMOS ultimately limited
- Exploration of innovative materials, active and passive devices, and architectures exploiting them is a must

Microscopic wireless as ground-breaker and game-changer