Nitrite Reducing Bacteria Isolated from Groundwater and Sediment from the Oak Ridge Field Research Center

Karen Ho¹, Alexander Aaring², Bryson Cwicik³, Romy Chakraborty²
¹Pasadena City College, ²Lawrence Berkeley National Laboratory

2016 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract: Microbes’ and microbial communities’ impact on their ecosystems are not well understood. We work to isolate novel strains of bacteria from their environments and study their physiology. In this research, nitrite respiring bacteria are isolated from core sediment through enrichment for carbon utilization under anaerobic conditions. Furthermore, three naturally co-existing strains of *Pseudomonas fluorescens*, which have already been isolated from groundwater, were cultivated in monocultures and co-cultures under denitrifying conditions to study their growth and explore their tolerance and sensitivity to nitrite. These cultures were exposed to different concentrations of nitrite in 48 well plates and its growth was monitored throughout its period of incubation. We study the effects of nitrite on the system because it is the first intermediate in the nitrate reduction pathway, but is also known to be toxic to bacteria. Currently there is a knowledge gap, so these results have implications for future research and studies on how microbes interact under other conditions or in different microbiomes.

Background

- This project is part of a larger multi-institutional collaboration funded by the US Department of Energy called ENIGMA.
- The ultimate goal is to advance our understanding of microbial biology and the impact microbial communities have on their ecosystems.
- Environmental microbes studied were collected from the sediment and groundwater at the Oak Ridge Field Research Center.
- Bacteria studied here are under denitrifying conditions and grown in the presence of nitrite which not only is the first intermediate in the nitrate reduction pathway, but is also known to be toxic to bacteria.

Isolations

- Sediment
  - ~200µL 96-well plates
  - 2mL 96-deep well plates
  - Carbon source+nitrite in phosphate buffered Basal media
  - Scale up
  - 20mL tube

- Isolation
  - 16S rDNA extraction & sequencing
  - Streaking to obtain isolates

- Growth observed on aerobic plate streaked with culture enriched in xylitol and found in sediment 10'-13' below ground. DNA was extracted from one colony and went through a process of amplification and purification.

- Figure 2. Carbon utilization at different depth of the sediment. Count of number of carbon species within the class that displayed an increased OD (optical density).

<table>
<thead>
<tr>
<th>Depth</th>
<th>0'-3'</th>
<th>3'-5'</th>
<th>5'-8'</th>
<th>8'-10'</th>
<th>10'-13'</th>
<th>13'-15'</th>
<th>15'-18'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Organic Acids</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>11</td>
<td>6</td>
<td>19</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Polymers</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Natural Products</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 3. Growth observed on aerobic plate streaked with culture enriched in xylitol and found in sediment 10'-13' below ground. DNA was extracted from one colony and went through a process of amplification and purification.

Conclusion

- Scaled up core plates are used for community analysis/metagenomics.
- *Pseudomonas* can be studied further and other aspects of the bacteria’s physiology can be tested.
- Testing *Pseudomonas* and its tolerance at different levels of nitrite gives us a better understanding of microbial communities present in anaerobic conditions and thriving in the presence of nitrite.
- Determining whether or not these bugs will grow at certain levels of nitrite can pave way to selecting certain bug combinations for future analysis.
- We now can also better predict and have a good understanding of how these *Pseudomonas* will react in the environment, when the soil/water becomes contaminated with nitrate from the nearby contaminated waters at Oak Ridge.
- This research is a tiny step in furthering our understanding of microbes and microbial communities in environmental microbiomes.

Nitrite Tolerance

- **Grow**
  - **Wash**
    - Anaerobically under N₂ gas
  - **Inoculation**
    - N1B4, N2E2, N2E3
    - 48-well plates

- Figure 4. Metabolism and growth of N2E2 mono-culture. Consumption of the electron donor, pyruvate, corresponds to the utilization of the electron acceptor, nitrate and the growth (OD) of the bacteria. No significant relationship with nitrite is demonstrated here.

- Figure 5. Mono-cultures and co-cultures. In N1B4 co-cultures, the other strain dominates. N2E2+N2E3 is observed to have a positive interaction as the end OD at 3mM and 6mM are greater than its monocultures (A). Strains sensitive to nitrite demonstrates no growth. This is also true with its co-culture pair (B).

Acknowledgments

Greatest gratitude to my research mentor Alexander Aaring, Principal Investigator Romy Chakraborty, and all the other people in the lab who helped shaped this wonderful learning experience. Thank you to the Transfer to Excellence Research Experience for Undergraduate program staff who have done so much to help me achieve success. Also thank you to my community college professors and administrators who have inspired me to work hard and be a positive influence.

Contact Information
Karen Ho
karenho379@gmail.com

Support Information
This work was funded by National Science Foundation Award ECCS-1461157 & ECCS-0939514