Abstract
Acetyl CoA (AcCoA) is an important starting molecule for the biosynthesis of many biotechnologically relevant metabolites, such as isoprenoids used as flavors and fragrances, biodiesels, and anticancer drugs. In the yeast Saccharomyces cerevisiae, AcCoA metabolism occurs in at least four subcellular compartments, yet no innate pathway exists for direct transport between compartments. Our research aims to increase cytosolic AcCoA levels by using protein transporters AT-1 and the yeast homologue YBR220C to move the molecule from the mitochondrial compartment into the cytosol. We investigate the insertion of targeting sequences for the mitochondrial inner membrane under constitutive promoters of varying strength to properly localize these protein transporters.

Targeting to the Mitochondria
Figure 2. Targeting Sequences with high efficiencies are derived from mitochondrial proteins active in cellular metabolism. We utilized 3 targeting sequences:
- Mitochondrial Oxidase Assembly protein 1 (Oxa1p)
- ATPase F-1 β-subunit (F-1)
- Cytochrome Oxidase IV (OxaIV)

Localization of GFP-tagged Proteins
Figures 4, 5. The fluorescence microscope images of bioproducts such as those in the green box.1

FUTURE DIRECTIONS
- Use the mitochondrial tags to localize the AT-1 (A, B) and YBR220C protein transporters to the mitochondria.
- Determine whether transporters localized to the mitochondria are toxic to the cell.
- If AT-1 and YBR220C are not toxic in the mitochondrial inner membrane, Acetyl-CoA levels within the cell can be assessed to determine if amounts in the cytosol have increased.
- Determine the effect of the transporters and concomitant cytosolic AcCoA increase upon titers of bioproducts.

Citations

Support Information
Funded by National Science Foundation Awards ECCS-0939514 & EEC-1157089.
Contact Information
Michelle Gantos
michelle.gantos@gmail.com
Cell: (415) 722-4456

Verifying Transporter Expression
Figure 7. The protein transporters AT-1 and YBR220C successfully express within the yeast cell. Western blotting of pelletted recombinant cells and supernatant containing plasmids encoding AT-1 or YBR220C regulated by a high or low strength promoter confirmed successful expression. AT-1 has a molecular weight of 64.0 kDa and YBR220C has a molecular weight of 65.1 kDa. Bands were strongest for samples taken from the pellets, indicative of the insolubility of membrane proteins.

Localization of GFP-tagged Proteins
Figures 4, 5. The fluorescence microscope used for this study.

Support Information
Funded by National Science Foundation Awards ECCS-0939514 & EEC-1157089.
Contact Information
Michelle Gantos
michelle.gantos@gmail.com
Cell: (415) 722-4456