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Introduction

Energy disaggregation, if solved, may be one of the most important contributions to energy conservation. Energy disaggregation will allow for greater control and optimization of our current energy grid, as well
as naturally curb individual energy consumption. Energy disaggregation is the task of breaking up the whole energy signal of a home or business into its individual components. The method used translates

a device’s energy consumption pattern into a Hidden Markov Model. After the device models are created, they are joined together to create an Additive Factorial Hidden Markov Model. Then, inference over

a household’s energy consumption signal using the Viterbi Algorithm was performed. This in turn gives me the most likely devices consuming energy at any given time period providing the power usage.

The method works over small datasets with a low number of devices. However, the approach proves too slow to be considered a complete solution.
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Generally, household devices consume power in a piecewise manner. As a result, | chose to model their
operation as a stochastic process using Hidden Markov Models (HMM). HMMs are a Markov process in
which we can not see what state the model is in, only the emission (power consumption). In the example
above | have a device that operates in three states: On High, On Low, and Off. The solid arrows between
them denotes the probability of the device transitioning from its current state into a different state. The dashed

arrows denote the probability density function of the power consumption for each device given its state. In Contact Information Su_pport Information
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