Simvascular: Optimizing 3D and Comparing 3D models

Michael Fernandez¹, Adam Updegrove², and Shawn Shadden²
¹East Los Angeles College, ²Department of Mechanical Engineering, University California Berkeley
2016 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract: Patient-specific blood flow modeling was pioneered in the late 1990’s to investigate and predict the progression of cardiovascular disease, and in recent years, has proven to be a powerful tool in clinical research [1]. In the 2000’s, researchers needed to purchase very expensive and robust specialized commercial tools for arterial model construction and blood flow simulation. Recently, a team of researchers at Stanford and UC Berkeley has promoted research in this area by creating an open source software pipeline called SimVascular. SimVascular provides a framework to reconstruct an arterial model from MRI or CT data, and then perform blood flow simulations on the reconstructed model. Despite being the leading computational tool for arterial modeling and blood flow simulation, it still takes an experienced user multiple hours to create an arterial geometry in SimVascular. This presentation will discuss our efforts to: (1) Lead the development of open source one-click conversion of image data into accurate 3D arterial models, (2) compare the open source models to previously commercial models, and (3) make available a large number of open source arterial models that are ready for blood flow simulation and disease investigation. Through these efforts the group hopes to demonstrate the validity of the open source components of SimVascular. And ultimately, the goal of the Simvascular project is to allow for the proliferation of accurate arterial models and simulations into the hands of medical professionals.

Motivation

- Cardiovascular disease is the leading cause of death worldwide
- Caused or enhanced by disruptions of blood flow
- In 2000’s researchers required expensive commercial tools for arterial modeling
- Simvascular was created to reconstruct an arterial model from MRI and CT image data
- Currently has open source components that need to be compared to previously commercial components

Comparing Models

- Parasolid: Commercial
 - Analytic modeling
 - Points form triangles
- Polydata: Open Source
 - Points are created inside the initial rendering
 - Segmentation
 - Model
 - Smoothing
 - Segmentation are assembled into one connected model
 - Unrealistic geometries
 - Decimation
 - Increasing Triangles
 - Subdivision
 - Decreasing Triangles
 - Smoothing
 - Removing Roughness

Case 1: Compare Parasolid models of different triangle edge sizes
- Points are created inside the initial rendering
- Segmentation
- Model
- Smoothing
- Segmentation are assembled into one connected model
- Unrealistic geometries

Case 2: Polydata to Parasolid created from same segmentations (Figure 1)
- Previous Polydata models, compared to Parasolid models created from new segmentation (Figure 2 & 3)
- Models are remeshed to the same edge size

Case 3: Polydata to Parasolid model created from different segmentations (Figure 2 & 3)
- Previous Polydata models, compared to Parasolid models created from new segmentation (Figure 2 & 3)
- Models are remeshed to the same edge size

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Average Distance (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 cm</td>
<td>0.35 cm + 0.15 cm</td>
</tr>
<tr>
<td>0.35 cm</td>
<td></td>
</tr>
</tbody>
</table>

Results

Case 2: Parasolid to Polydata created from same segmentations (Figure 1)
- Previous Polydata models, compared to Parasolid models created from new segmentation (Figure 2 & 3)
- Models are remeshed to the same edge size

Figure 1.

Discussion

- Case 2 (Figure 1) had average distance values around .027 cm, a small difference between Polydata and Parasolid models as compared to control, lofting method did not have a large effect.
- Case 3 (Figure 2 & 3) had average distance and hausdorff distances all larger than the average distance graph given in case 1.
- Using new tools in Simvascular, it is clear that the newer models match the image data more closely.

Conclusion

- 15 models were successfully created, deposited and ready for blood flow simulation.
- An automatic model preparation function was successfully created, moving closer to one step conversion of image data into models.
- A metric was created for the assessment of the average distance and hausdorff difference between two models.
- Using the same segmentations, creating models in Polydata or Parasolid format did not have a large effect on models.
- Further work needs to be done to automate the lengthy segmentation process.

References

1. Heart Disease: Coronary Artery Disease. [Image]. Available: http://www.montcopa.org/2319/Heart-Disease-Coronary-Artery-Disease

Acknowledgements

Special thanks to my mentor for helping me throughout the program. I also want to thank the Shadden lab for having me over the summer. Thank you Lea for organizing the TTE REU program.

Contact Information

Michael Fernandez
michael51097@gmail.com
626-388-0992

Support Information

This work was funded by National Science Foundation Award ECCS-1461157 & ECCS-0939514