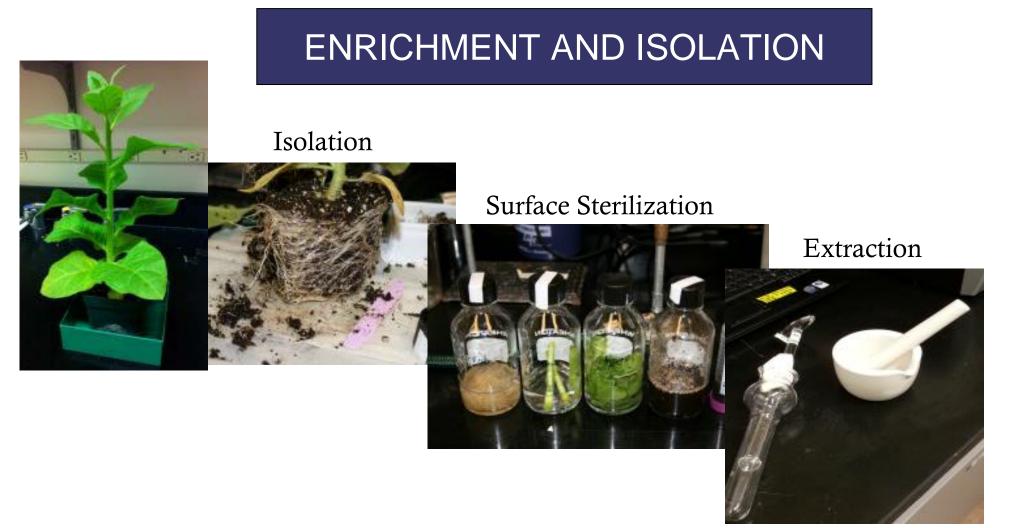
Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops



Paul Felix, Marcus Schicklberger, Jiawen Huang, and Romy Chakraborty Lawrence Berkeley National Laboratory, Berkeley, CA 94530

ABSTRACT

Nitrogen (N) is an essential component of DNA and proteins. It is also a key element of life that is often limited in plants, which negatively affects their growth. In natural ecosystems, plants are strongly affected by their associated micro-biome. Plants have developed strong, symbiotic relationships with microbes to cope with the low availability of nitrogen in the soil. Optimizing the relationship between plants and diazotrophic bacteria (nitrogen-fixing bacteria) could provide adequate amounts of nitrogen to the host-plant and thus eliminate the need of fertilizer use in energy crop cultivation. Therefore, we investigated the diversity of microbes in Tobacco (Nicotiana tabacum), considered as potential energy crop for bioenergy production. Several bacterial isolates from the phylogenic order *Rhizobiales* were obtained from the rhizoplane and roots of this plant using several different N-deficient media. Majority of these isolates grew best with simple sugars and small organic acids. Further, we were able to identify isolates capable of fixing molecular nitrogen, as observed from PCR amplification targeting the *nifH* gene. Together these results help to understand the impact of plant associated microbes on the growth and survival of these biofuel plants. This understanding is necessary for the develop eco-friendly economically sustainable energy crops by decreasing their dependency on fertilizer.

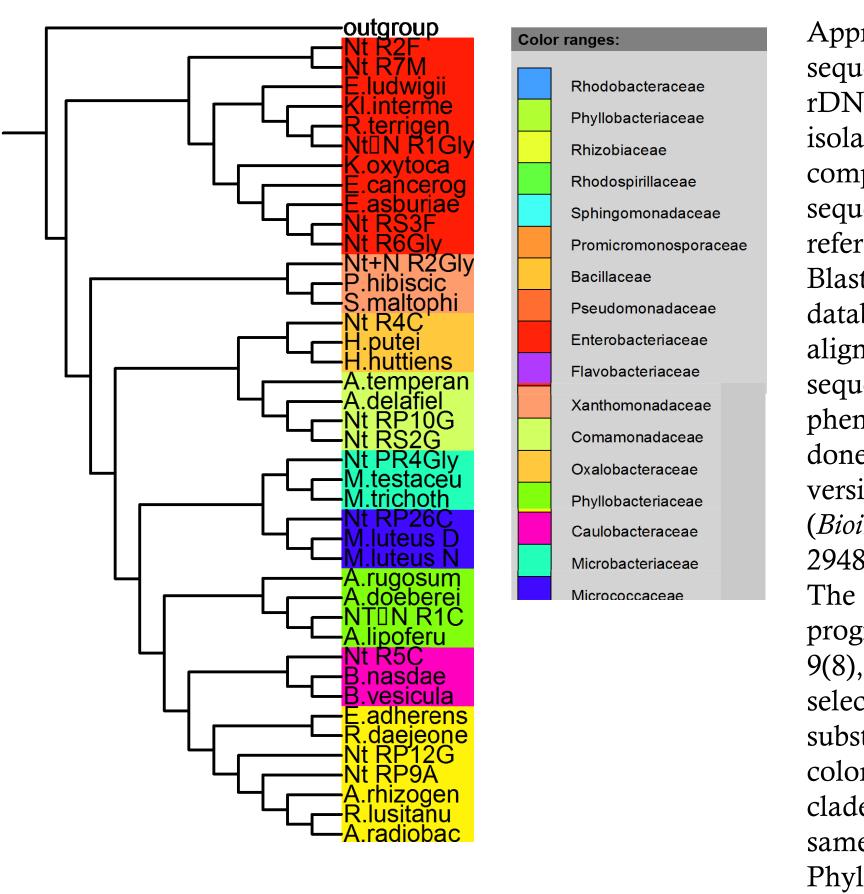
SCIENCES DIVISION

Serial Dilution Plate

	Glucose	Fructose	Citrate	Butyrate	Malate	Lactate	Acetate	Glycerol	
		1	2	3	4	5	6	7	8
A									
В									
С									
D									
E									
F									

Using Nicotiana tabacum as a model plant, we isolated bacteria from five sources: leaves, stems, roots, rhizosphere, and rhizoplane. The leaves, stems, and roots were surface sterilized using a series of washings with 1.5% bleach and water. Extraction of bacteria was done incubating samples in 5 mM sodium pyrophosphate with subsequent mechanical break down of plant material. Three, 48-well plates, per extraction source were setup using three different N-deficient media and 8 different carbon sources. A serial dilution method was used in attempt to obtain single colonies. Four separate growth stages were utilized in order to ensure a pure culture for DNA extraction and phylogenetic characterization.

> Incubated in appropriate media Isolates picked Single colonies transferred to Dilution streak on LB plates liquid LB for DNA extraction


RESULTS

Isolates Identified from Tobacco (*Nicotiana tabacum***)**

Isolate	Closest Relative by 16S rDNA Sequencing in NCBI Database	Similarity
NtR2F	Enterobacter ludwigii	99%
NtR3C	Herbaspirillum huttiense	99%
NtR4C	Herbaspirillum huttiense	99%
NtR5C	Brevundimonas nasdae strain W1-2B	99%
NtR6Gly	Enterobacter cancerogenus	99%
NtRP4Gly	Microbacterium testaceum strain DSM 20166	99%
NtRS2G	Acidovorax delafieldii strain 133	99%
NtRS3F	Enterobacter asburia	99%
NtR7M	Enterobacter ludwigii	99%
NtRP6C	Herbaspirillum huttiense	99%
NtRP8B	Rhizobium etli	<mark>98%</mark>
NtRP9A	Agrobacterium radiobacter K84	99%
NtRP10G	Acidovorax delafieldii strain 133	99%
NtRP12G	Ensifer adhaerens	97%
NtR9Gly	Enterobacter ludwigii	98%
NtR13F	Enterobacter ludwigii	99%
NtR20G	Enterobacter ludwigii	99%
NtRP27F	Ensifer adhaerens	97%
NtRP28F	Micrococcus leteus	99%
NtR22G	Rhizobium tropici	98%
NtR23C	Rhizobium tropici	98%
NtNR1C	Azospirillum doebereinerae	99%
NtNR1Gly	Raultella terrigena	99%

Diazotrophic Isolates from Tobacco (*Nicotiana tabacum*)

Isolate	Closest Relative by 16S rDNA Sequencing in NCBI Database	Similarity
NtRP8B	Rhizobium etli	98%
NtRP12G	Ensifer adhaerens	97%
NtRP27F	Ensifer adhaerens	97%
NtR22G	Rhizobium tropici	98%
NtR23C	Rhizobium tropici	98%
NtNR1C	Azospirillum doebereinerae	99%
NtNR1Gly	Raultella terrigena	99%

Approximately 1250 bp sequences of the 16s rDNA gene of all isolates obtained were with compared sequences the of reference organisms by Blast search using NCBI database. Multiple the alignments of sequences on based phenetic procedures were done with the ClustalX 2.1 version (Bioinformatics, 23, 2947-2948). jModelTest2

program (Nature Methods 9(8), 772) was used to select the best nucleotide substitution model. The color code indicates clades clustering to the same bacterial family. Phylogenetic relationship of isolates is shown for Nicotiana tabacum.

This work was funded by National Science Foundation Award ECCS-0939514 & ECCS 1157089 and supported by the Laboratory Directed Research and Development (LDRD) Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

Contact: pfelix25@gmail.com

NITROGEN FIXATION

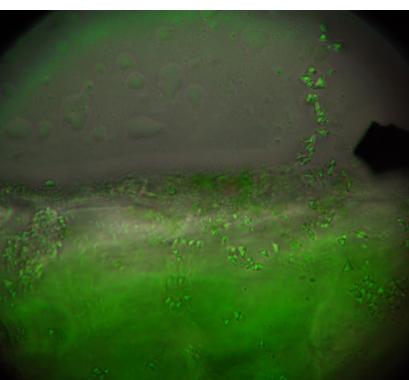
PolFR primer were used to amplify nifH. The nifH gene is considered to be fairly conserved, and is the most widely sequenced marker gene used to Size in identify nitrogen-fixing bacteria. The amplified product is visualized on the gel as the 300 bp fragment. The primer sequences are listed below. PolF: 5' TGCGAYCCSAARGCBGACTC 3' PolR: 5' ATSGCCATCATYTCRCCGGA 3' Several isolates belonging to Rhizobium spp, Azospirillum spp., Raultella spp., and Ensifier spp. tested positive for *nifH* (see list of isolates). We are in the process of confirming nitrogen fixing capability by these strains using physiology based assays.

			NiRP _{8B}	NiRP12G	NtR22G	NtR23C
Size in bp			1000			-
2000	-					
800	-	-				
400	-	4				
200	-	14	-	-		-
100	-					

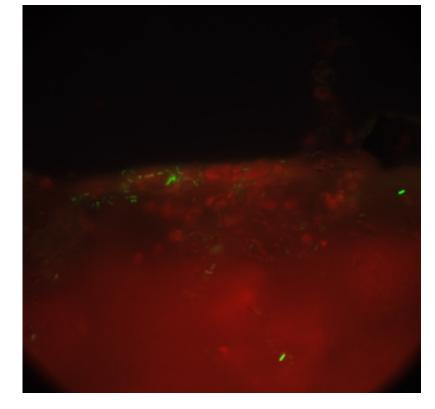
REISOLATION OF BACTERIA FROM SEEDS

To follow up on the endophytic character of isolated diazotrophic bacteria, sterilized tobacco seeds were incubated overnight with the nifH positive strain NtRP8B. After incubation, seeds were removed from the media and surface sterilized using a series of washings with 1.5% bleach and sterilized water. Crushed seeds were used as inoculum for new LB media. After noticeable growth was observed, DNA extraction and 16S gene amplification were performed. Positive PCR results were purified and submitted for phylotyping. Sequence analysis revealed the re-isolation of strain NtRP8B, and thus the capability of this bacteria to re-infect seeds. In another approach, inoculated seeds are also being used in attempt to promote plant growth. This is work in progress.

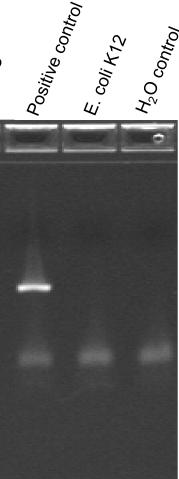
Invaded seeds growing in plant media

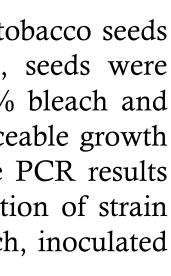

CONCLUSION

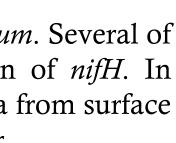
We successfully identified and isolated microbes closely associated with *Nicotiana tabacum*. Several of these isolates are potential nitrogen fixing bacteria as shown by PCR amplification of nifH. In accordance to Koch's' postulates, we were also able to re-isolate nitrogen-fixing bacteria from surface sterilized seeds after bacterial re-infection. This also confirms their endophytic character.


FUTURE PROJECTIONS

- Measure and compare plant growth after germination
- Transform and track diazotrophic bacteria and nitrogen-fixation inside of plant using GFP plasmid • Identify cross-talk between plants and endophytic bacteria
- Perform N-fixation assay (Acetylene reduction assay)
- Genetically modify energy crops to attract diazotrophic endophytic bacteria


Leaf extract under normal lighting conditions




Leaf extract under UV w/excited emission of GFP



