Towards Nanowatt Computing

Dennis Sylvester University of Michigan

Michigan Integrated Circuits Laboratory

What I Learned from Chenming

- 1st meeting: If you want a job...
- Biggest thing: Research is fun!
 - Bucking the MS PhD trend in late 90s
- What to spend time on...
 - New ideas vs. thesis
- How to run group meetings
 - Divide and conquer, get students engaged in others projects
- Not every project is the FinFET (but hopefully some are!)
- Empower your students, early and often
 - Proposal writing, reviewing journal submissions, internships
- Balance between hands-on and hands-off
 - Ex: Track papers out the door
- How to name a softball team:
 - Hot Electrons →
- And much more!

Modern Computing Landscape

- Cloud
 - Social networking, Google Docs
- Mobile
 - Smart phones, tablets
- Sea of sensors
 - Ubiquitous computing
 - The next explosion

The Power Problem

Today: Max Vdd, High Performance, Power Constrained

Optimal Energy Operation

Near-Threshold Computing

NTC in the Cloud

- Centip3De, 7-layer 128core system with stacked DRAM
- 4 GOPS/W general purpose in 130LP

- XRAM: SRAM-inspired crossbar for many-core processors
 - 7.4Tb/s/W @ 0.6V

NTC in Mobile Multimedia

- FFT accelerator with record energy efficiency
 - 15-18nJ/FFT @ 240MS/s
- Aggressive pipelining used to drive down Vopt and Emin
- Minimize leaky memory through algorithm-circuit co-design
- Heavy Intel research in this area also (NTV)
- BUT the largest opportunity lies elsewhere...

Bell's Law

Bell's Law – Corollary

Bell's Law – Production Volume

Bell's Law – Production Volume

The Opportunity & Challenge

- Tiny nearly invisible computing devices will revolutionize health care, security, infrastructure and environmental monitoring
- Very hard to achieve
 - Size vs. lifetime
- We are close to delivering on this vision
 - What are the killer apps?
 - How small can we make them?

nW mm-Computing: Application Areas

Where Are We Now?

Why aren't we further along?

- Long device lifetime vs. small form factor
- The 3 most important things in miniaturization
- <u>Circuits just are not</u>
 <u>there yet</u>

Laptop - 24,500cm³ Smartphone - 63cm³ Micro-mote - 63mm³ [Pister2000] Image: Construction of the state of the st

- Solving the battery size bottleneck:
 - 1. Improve battery capacity
 - 2. Energy harvesting
 - 3. Reduce power draw

mm³: How Do We Get There?

- Microsystem functions include sensing, processing, storage, and transmission
- All components must be re-examined to fit within power envelope defined by power sources and power management

Building Systems in Academia

A 1.5mm³ Wireless Microsystem

- Continuous intraocular pressure monitoring
- Wireless communication
- Energy-autonomy
- Device components
 - Solar cell
 - Wireless transceiver
 - Cap to digital converter
 - Processor and memory
 - Power delivery
 - Thin-film Li battery
 - MEMS capacitive sensor
 - Biocompatible housing

M³: Michigan Micro-Mote

A 1mm³ general sensing platform

- Modular die-stacked structure
- I²C inter-layer communication
- 1 Thin film Li battery 150µm
- 4 IC layers
 - Thinned (50µm)
 - 3 different technologies (65/130/180nm)

Conclusions

- Applications of mm-scale nanowatt computing are endless and often unimaginable today
 - But first the hardware must get there (it finally is)
 - The nanowatt challenge!
- Power minimization is paramount
 - Few nW avg power
 - 1-10m comm range
 - ~Indefinite lifetime
 - Re-think sensor system from bottom up

