

# Investigation of Spin-on Dielectrics as an Interlayer Dielectric for the **Marvell Nanofabrication Laboratory CMOS210 Baseline Project**

**Kevin Crabbe and Jeffrey Clarkson** 

University of California, Berkeley **Marvell Nanofabrication Lab** 



2014 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU Program)

Abstract: The Marvell Nanofabrication Laboratory complementary metal oxide semiconductor (CMOS) Baseline Process is in need of a multi-level metallization scheme in order to have a platform to build nanoelectromechanical (NEM) relays that can potentially replace certain kinds of transistors. The scheme consists of two interconnecting metal layers and a dielectric material for isolation. When the metal layers cross over one another and isolation is desired, the dielectric material must be between them. We report on the use of a low temperature oxide (LTO) / spin on glass (SOG) / LTO thin film stacks.

## **Motivation**

The purpose of developing this system of interlayer dielectrics is to develop a multilevel metal scheme that can support nanoelectrical mechanical (NEM) relays such as those shown in Figure 1. NEM relays are able to save vast amounts of energy in next generation computer chips. Thus, designing a scheme that is conducive towards the co-integration of transistors and NEM relays is of interest.

## **Experimental Results**

### First Low Temperature Oxide Film Results

First Layer of LTO Thickness (Å)

Wafer Center Flat Top Left Right Average Uniform

Multilevel metallization schemes, as shown in Figure 2, consist of multiple levels of metal traces that interconnect one another in selected locations. Areas where they do not connect are isolated by placing an insulating, interlayer dielectric material between them.

This project focuses on developing the first interlayer dielectric consisting of low temperature oxide and spin-on dielectric films.





Figure 1. NEM Relay. Digital image. Nano.stanford.edu. Stanford University, n.d. Web.

Figure 2. A cross-sectional schematic of a multilevel metallization scheme and subsequent close up of the components comprising the first interlayer dielectric.

**Process Flow** Trenches are used to emulate the topography of devices. These trenches were created using 1. Obtain Wafers photolithography and etching processes. with Si Topography 1000 Å of low temperature oxide is deposited

| Average Uniformity |      |      | 0.029  |      |      |        |       |
|--------------------|------|------|--------|------|------|--------|-------|
| Average Thickness  |      |      | 1133.8 |      |      |        |       |
| 12                 | 1149 | 1127 | 1145   | 1142 | 1140 | 1140.6 | 0.019 |
| 9                  | 1117 | 1133 | 1098   | 1140 | 1114 | 1120.4 | 0.037 |
| 6                  | 1133 | 1141 | 1060   | 1139 | 1082 | 1111   | 0.053 |
| 5                  | 1161 | 1168 | 1158   | 1167 | 1162 | 1163.2 | 0.009 |
|                    |      |      |        |      |      | Ŭ      |       |

### Spin-on Dielectric Results



### Second Low Temperature Oxide Film Results

Spin-on Dielectric Problem: Spin-on dielectric outgassing causes blistering and cracking when volatile organic materials ( $CO_2$ , and  $H_2O$ ) evolve from the spin-on dielectric.



400 ° C, 200 – 400 torr cure in vacoven for 30 min 400 C before LTO deposition (no).

EHT = 1.50 kV

Width = 11.37 µm

Mag = 33.51 K X

Date :5 Aug 2014

Dwell Time = 100 ns

| <u>Spin-on</u> | Dielectric  | Solution:    | The wafers   |
|----------------|-------------|--------------|--------------|
| were cure      | d at 450 °  | C and then   | annealed at  |
| 465° C fo      | or 40 min k | pefore depos | iting LTO at |

2nd

3rd

**Average Removal Rate** 





# Conclusions

Width = 44.18 µm

Mag = 8.63 K X

Date :5 Aug 2014

EHT = 1.00 kV

WD = 3.1 mm

- IC1-200 spin-on dielectric was investigated as a first level interlayer dielectric (ILD).
- A three layer stack, consisting of 1,000 Å low temperature oxide, ~1,400 4,000 Å spin-on dielectric, and 20,000 Å low temperature oxide has been developed for the ILD.
- Outgassing of volatile materials caused blistering which was overcome by developing a new anneal recipe for the LPCVD reactor.
- Chemical mechanical planarization was successful in creating level surfaces necessary for co-integration of NEM relays.













31.82

30.43

31.46

