Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic

Mark Rodwell, Doron Elias
University of California, Santa Barbara
High Aspect Ratio Fins for Low-Power Logic

Fin thickness defined by Atomic layer epitaxy → nm thickness control

Fin height defined by sidewall growth → 200 nm high fins

Enables ~4 nm fin bodies → 8 nm gate length
10:1 more current per unit die area
→ smaller IC die area
 complements lithographic scaling

Enables high speed, ultra low-power logic,
V_{dd}~300 mV

InGaAs finFET: 8 nm thick fin 200 nm high

D. Elias, DRC 2013, June, Notre Dame

height>> pitch
Background: III-V MOS

V. Chobpattana et al (Stemmer group), APPLIED PHYSICS LETTERS 102, 022907 (2013)

$L_g = 60$ nm

$V_{DS} = 0.1$ to 0.7 V
0.2 V increment

G_m (mS/µm)

$V_{DS} = 0.1$ to 0.7 V
0.2 V increment

$V_{GS} = -0.4$ V to 1.0 V
0.2 V increment

$R_{on} = 268$ Ohm-µm
at $V_{GS} = 1.0$ V

SS ~ 80 mV
$V_{DS} = 0.1$ V
SS ~ 120 mV
$V_{DS} = 0.5$ V

Current Density (mA/µm)

Drain Bias (V)
FinFETs by Atomic Layer Epitaxy: Why?

Electrostatics:
body must be thinner than $\sim L_g / 2$
→ less than 4 nm thick body for 8 nm L_g

Problem:
threshold becomes sensitive to body thickness

$$\delta V_{th} \propto \delta T_{body} / T_{body}^3$$

Problem:
low mobility unless surfaces are very smooth

$$\mu \propto T_{body}^6 / \delta T_{body}^2$$

Implication: At sub-8-nm gate length, need:
atomically-smooth interfaces
atomically-precise control of channel thickness

side benefit: high drive current → low-voltage, low-power logic
ALE-Defined finFET: Process Flow

Fin template: formed by \{110\}-facet-selective etch → atomically smooth

Channel thickness set by ALE growth → atomically precise

Not shown: gate dielectric, gate metal, S/D metal
Images

- HfO$_2$
- fin, $\approx 8\text{nm}$
- TiN

50 nm fin pitch

10 nm thick fins, 100 nm tall

100 nm fin pitch

source
channel

20 nm

200 nm
Goal: Tall Fins for High Drive Current

\[
\frac{\text{current}}{\text{transistor width}} = J_{\text{surface}} \cdot \frac{\text{fin height}}{\text{fin pitch}}
\]

Goal: fin height \gg fin pitch (spacing) \rightarrow more current per fin
\rightarrow less fins needed \rightarrow higher integration density

Higher density \rightarrow shorter wires \rightarrow smaller $C_{\text{wire}}V_{\text{dd}}/I$, $C_{\text{wire}}V_{\text{dd}}^2/2$
Is the IC Area Reduction Significant?

Clock/interconnect drivers need large drive currents. Area reduction for these is likely substantial.

FETs in Cache Memory & Registers are drawn at minimum width. No area reduction for these.

Most, but not all, Logic Gates will be drawn at minimum width.

Benefit must be evaluated by VLSI architect, not by device physicist.
300 mV Logic: Can We Address The $CV^2/2$ Limit?

The $CV^2/2$ dissipation limit

![Graph showing I_d vs V_{gs} for V_{dd} set for target I_{on}, hence acceptable CV_{dd}/I_{on}. Threshold set for acceptable off-state dissipation $I_{off}V_{dd}$.]

V_{dd} is set for target I_{on}, hence acceptable CV_{dd}/I_{on}. Threshold set for acceptable off-state dissipation $I_{off}V_{dd}$.

With minimum C_{wire}, a minimum switching energy $C_{wire}V_{dd}^2/2$ is set.

Subthreshold logic

![Graph showing I_d vs V_{gs} for V_{dd} is simply reduced. Decreases energy $CV_{dd}^2/2$. Increases delay CV_{dd}/I_{on}.]

V_{dd} is simply reduced.
Decreases energy $CV_{dd}^2/2$.
Increases delay CV_{dd}/I_{on}.

Tunnel FETs

![Diagram of Tunnel FETs showing source, gate, dielectric, drain, P+ source, channel, N+ drain, and barrier.]

Bandgap of P+ source truncates thermal distribution.

Potential for low I_{off} at low V_{dd}.

Obtaining high I_{on}/V_{dd} is the challenge.
Goal: Tall Fins for Low-Power, Low-Voltage Logic

Supply reduced from 500mV to 268 mV while maintaining high speed.

3.5:1 power savings? Must consider FET capacitances.

Assumes (Hodges & Jackson, 2003): (1) Charge-control analysis
(2) \(I_{on,PFET} / W_g = 0.5 * I_{on,NFET} / W_g \)
(3) FO=FI=1
Power and Delay Comparison

Planar FET, \(V_{dd} = 500 \text{ mV} \)

- \(I_{on} = 20 \mu A, \ I_{off} = 2nA \)
- \(C_{g-ch} = \frac{I_{on} L_g}{V_{inj} V_{dd}} = 1.3 \text{ aF} \)
- \(C_{gd-f} = C_{gs-f} = 6 \text{ aF} \)
- \(C_{wire} = 2 \text{ fF (10 \mu m length)} \)
- \(C_{total} = 2.1 \text{ fF (various multipliers)} \)
- \(\text{delay} = 52 \text{ ps} \)
- \(C_{total} V_{DD}^2 = 0.26 \text{ fJ} \)

tall finFET, \(V_{dd} = 268 \text{ mV} \)

- \(I_{on} = 20 \mu A, \ I_{off} = 2nA \)
- \(C_{g-ch} = \frac{I_{on} L_g}{V_{inj} V_{dd}} = 3.7 \text{ aF} \)
- \(C_{gd-f} = C_{gs-f} = 60 \text{ aF} \)
- \(C_{wire} = 2 \text{ fF (10 \mu m length)} \)
- \(C_{total} = 2.9 \text{ fF (various multipliers)} \)
- \(\text{delay} = 39 \text{ ps} \)
- \(C_{total} V_{DD}^2 = 0.11 \text{ fJ} \)
Why tall finFETs? Why Not Just Subthreshold Logic?

Planar FET, $V_{dd} = 268 \text{ mV}$

$tall \text{ finFET, } V_{dd} = 268 \text{ mV}$

Low $I_{on} \rightarrow large CV_{DD}/I_{on}$ delay, subthreshold logic is slow.

$I_{on} = 2.0 \mu A$

$I_{on} = 20 \mu A$
Why tall finFETs? Why Not Just Subthreshold Logic?

Planar FET, \(V_{dd} = 268 \text{ mV} \)

\[I_{on} = 20 \mu\text{A} \]

tall finFET, \(V_{dd} = 268 \text{ mV} \)

Die size increased 10:1

(also: longer interconnects, etc)

Die size increased 10:1

(also: longer interconnects, etc)
Tunnel FETs & High-Aspect-Ratio Fins

Quick performance estimate:
Assume, for a moment, that P/N tunneling probability is 10%.*
Typical of the best reported ohmic contacts.*

Then on-currents for tunnel FETs are ~10:1 smaller than that of normal FETs.

Unless I_{on}/W_g is high, tunnel FETs will suffer from either
large $C_{wire}V/I$ gate delays or (increasing FET widths) large die areas.

Using high-aspect ratio fin structures, tunnel FET drive currents can be increased.
Parasitic fringing capacitance will then also contribute to CV/I & CV^2.

Contact to N-InGaAs @ 6E19/cm³ doping: $m^=0.1m_0$, 0.2 eV, 0.5 nm barrier
finFETs Defined by Atomic Layer Epitaxy

InGaAs finFET:
- 8 nm thick fin
- 200 nm high

Benefits:
- Enables ~4 nm fin bodies → 8 nm gate length
- 10:1 more current per unit die area
 → smaller IC die area
- Enables high speed, ultra low-power logic,
 $V_{dd} \sim 300$ mV

Fin thickness defined by Atomic layer epitaxy → nm thickness control

Fin height defined by sidewall growth → 200 nm high fins

D. Elias, DRC 2013, June, Notre Dame