NW-NEMFET: Steep Subthreshold Nanowire Nanoelectromechanical Field-Effect Transistor

Jie Xiang

Electrical and Computer Engineering and Materials Science Engineering
University of California, San Diego

Acknowledgements

Xiang Lab

- Ji-Hun Kim
- Zack C.Y. Chen
- SoonShin Kwon
- Han-Ping Chen

Former Members
- Peida Zhao
- Kyle F. Garton
- Dr. Mingliang Zhang

Collaborators

- Prof. Renkun Chen
- Prof. Baowen Li
- Prof. Yuan Taur
- Prof. Peter Asbeck
- Prof. Jennifer Cha
- Prof. Deli Wang
- Matt Wingert

Facility

- CalIT² Nano3 facility
- UCSD Cryo-Electron Microscopy Facility with support by NIH and Agouron Institute

Startup Fund
Senate Research Award
Hellman Fellow

Electrical, Communications and Cyber Systems (ECCS)

DARPA
NSF
TRITONS
Tritons UC San Diego
Hellman Fellows
UCSD Jacobs
MOSFET Static Power Exponentially Dependent on S.S.

\[P = ACV^2f + VL_{\text{leak}} \]

Dynamic

Static

\[I_{\text{leak}} = I_G + I_{\text{GIDL}} + I_{\text{off}} \]

\[I_{\text{off}} \propto \exp\left(\frac{-qV_{th}}{k_BT}\right) \]

\[SS = \left| \frac{\delta V_g}{\delta \log I_d} \right| = \ln 10 \times \frac{k_BT}{q} \]

\[P_{\text{static}} \propto V_{DD}I_{\text{off}} \propto \exp\left(\frac{-V_{th}}{SS}\right) \]
MOSFET S.S. are thermally limited by non-scaling factor $k_B T$
MOSFET S.S. are thermally limited by non-scaling factor $k_B T$

- Abrupt electromechanical pull-in does not depend on $k_B T$
- Similar source-drain current as MOS when on

Input V_g

Output I

• PMOS
 - I_{on}
 - $V_{threshold}$
 - V_{dd}
 - I_{off}

• A ideal switch
 - I_{on}
 - 0
 - S.S.
 - I_{off}

UCSD Jacobs
Early Proposed NEMFET/Suspended Gate FET

Tsu-Jae, King et.al. IEDM (2005) 463-466.

Limitations of experimental suspended-gate FET

- Large gate mass limits resonant frequency to ~ 16 MHz
- High voltage and large on-off V_g window ~ 5 V
- How does it scale towards NEMS?
What is “Nanoelectromechanical Systems (NEMS)”?
Nanowire Nanoelectromechanical Systems (NEMS) with GHz resonance

- Fast $f_0 \sim$ GHz
- Sensitive transducers
- Mass sensitivity: yocto~zepto gram
- Force sensitivity \sim pN

Huang XMH, et.al., *Nature* **421** 496 2003 (Caltech)
NEMFET is not the following

2 / 3 Terminal NEM contact switches

- NEMFET does not require metal-metal or metal-semiconductor contact
- Potential to alleviate reliability concerns
NW NEMFET: Basic Device Design and Simulation

Zero \(V_G\):
- Nanowire
- Gate oxide
- Gate
- Source
- Drain

Increase \(V_G\):
- Mechanical force
- Electro-static force

Pull-In Occurs:
- Depleted

Parameters:
- \(W = 20\) (nm)
- \(L = 1300\) (nm)
- \(t_a = 2\) (nm)
- \(N_d = 1 \times 10^4\) (cm\(^{-2}\))
- \(V_{FB} (p^+\text{-poly gate}) = 0.0898\) (V)
- \(\varepsilon_{re}=\varepsilon_0=8.85 \times 10^{-12}\) (F/m)
- \(\varepsilon_a = 11.7 \varepsilon_0\)
- \(\varepsilon_{sa} = 3.9 \varepsilon_0\)
- \(\psi_b = 0.4702\) (eV)
- \(\mu_p = 500\) (cm\(^2\)/V-s)
- \(\mu_n = 204\) (cm\(^2\)/V-s)
- \(V_a (\text{w/o gap}) = 0.584271\) (V)
- \(V_a (\text{w/10nm air gap}) = 4.20009\) (V)
- \(V_a = -0.2\) (V)
Modeling NEMFET device characteristics

- 10^{15} on-off ratio within a 0.5V V_{DD} window

- High I_{ON}/I_{OFF} ratio within 1V V_{DD} compared to 4V V_{DD}

- Higher p-doping of the NW leads to high off-current for the stuck-state
Gen 1 NEMFET: a contact switch

Process Flow

JH. Kim DRC (2013)
Gen 2 NEMFET: back gated

NW diameter : 28nm
L_CH :
1.68um
t_GAP 80nm Gate oxide
40nm ZrO

V_PI : 10.8V
V_PO : 6.5V
I_ON/I_OFF : 10.7
S.S. : <15mV

JH. Kim DRC (2013)
Final NEMFET with HfO$_2$ dielectrics

Atomic level control of air gap reduction by ALD coating
Near Zero S.S. at Room Temperature

$V_{pi} - V_{po} = 1.6$ V

$V_{pi} : 14.48$V S.S. : 6 mV/dec (limited by bin size)

$I_{on}/I_{off} : 2200$ (limited by stuck-state off current)

$I_{on} = 2 \mu$A
Stable, multiple switching with < 1V voltage window

- Initial rise but stabilized operational voltage window $(V_{pi} - V_{po}) = 0.83 \pm 0.52$ V
- Eventually failed due to stiction.

JH. Kim (submitted)
NEMFET resonance at 126 MHz (VHF)

\[I = G V_{sd} = (G^{DC} + \tilde{G}^{\omega})(V_{sd}^{\omega+\Delta\omega}) \]

\[= G^{DC} V_{sd}^{\omega+\Delta\omega} + \tilde{G}^{\omega} V_{sd}^{\omega+\Delta\omega} \]

\[I^{\Delta\omega} = \frac{1}{2} \frac{dG}{dq} \left(C_{g}^{\prime} \omega(\omega)V_{g}^{DC} + C_{g} V_{g} \right) V_{sd} \]

\[V_{d}^{ac} = 140mV \]

\[V_{d} = 120mV \]

\[V_{d} = 100mV \]

\[V_{d} = 80mV \]

\[V_{d} = 60mV \]

\[V_{d} = 40mV \]

\[I_{\text{MIX}} \] measurement with 400Hz/99% AM modulation

Measured \(f_0 = 126 \text{MHz}; Q = 630 \) at 40 mV drive.

Quadratic dependency of \(f_0 \) to AC drive voltage
Gate and bias dependence of resonance frequency elucidates how nanowire is tensioned and driven

- f_0 vs. V_g

 → Elastic Hardening. Nanowire has no slack

- f_0 vs. V_d

 → Capacitive Softening (Effective side gate effect)

JH. Kim (submitted)
Device Speed and Scaling – a design window for Si-based NW NEMFET

- Airgap fixed at 10 nm.
- >300 MHz with 5 V $V_{\text{pull-in}}$ can be achieved using SiNWs with 11.7 nm diameter. Readily available in our laboratory.
- Sub 1V operation for diameter smaller than 5 nm.
- More aggressive scaling with CNT, graphene and other 2D monolayer materials.
Conclusion

Low-Power, High-Speed NEMFET

- ~ 0 mV/dec S.S. circumvents thermodynamic limit to sharp switching
- VHF operation with small voltage window requirements (< 1 V) due to nanowire beam structure
- Can enable both logic and non-volatile memory

Next steps:
- Improvements needed on doping and surface states control in Si/Ge based channels.
- Further scaling and interface fixed charge planting for reduced V_{pi}. Explore new carbon-based or molecular monolayer materials.