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Neuro-Inspired Information Processing

Why? Traditional semiconductor scaling is slowing down

= Energy, low signal-to-noise ratio and variability limit further scaling of semiconductor
systems (end of “Moore’s Law” ?)

= Exploit properties of neural systems
— Massively parallel, high density, major redundancy, and adaptivity (learning)
— Robustness through exploitation of randomness and variability
— Multiple signal representations in single integrated environment (analog, discrete, digital)
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Alternative Computational Paradigms
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Metrics

" The means to compare neuro-inspired algorithms are similar
to the traditional ones. However, given the difference in
representations, metrics may have to be redefined

®" |mportant properties to be measured:

— Performance, latency
— Power, energy
— Robustness

— Density: given the 3D nature of many of the envisioned
implementations, density may be a better measure than area



Dimension of Representation

= A representation is minimal if dimensionality is just sufficient to
represent the full signal coverage

= Arepresentation is hyperdimensional when the number of
dimensions is “much” (> 10007?) larger than needed to cover the
space.
— Hyperdimensional representations are redundant, and most often sparse
— The axis’ are chosen at random



Hyperspace

Distance between nodes is a binomial distribution
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Thousand bit Vectors Space with One Million Nodes

1,000-dimensional space has 1,000 orthogonal vectors. But much more
nearly orthogonal and that's why we like hyper space



Computation in Hyperdimension

. S 3 4
Elements in the Involution T I . Elements in the Sum Elements in the Involution :
! Elemens in the Sum

= Ten patterns in the library = Ten patterns in the library
= Each pattern has 10000 bits = Each pattern has 100 bits
= High SNR = Low SNR



RAM vs. Sparse Memory
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“Sparse distributed memory and related models”, P. Kanerva



Read and Write Operations

“Sparse distributed memory and related models”, P. Kanerva



Fundamental Operations

. N . . . . ADDRESS REGISTER WORD-IN REGISTER
1,000 bits 1,000 bit
= N is huge hence 2V is practically infinite ) ) -
[t 00 --- 10 1] o 10 --- 11 0]
T o T
010 101 501 0 02-2 400
2 l1on 001 444 1—f1-1 1341
. . 2 foro 011 550 0 113 1101
000 0 aa7 11—z 42 020
= Basic Operations: S RS I 1 I R
T fooo PR 531 0 204 2
2
T T S | ADDRESS MATRIX —> : _’j CONTENTS MATRIX
g— M hard addresses . . MxU counters
o
C=SY,0W = 3 yAX)OW - EP Rt PR ¥ I P
t t y( [) t " oo 100 446 11 1
0 1 512 0 2 0.4
=1 t=1 Mlo 1 1 011 498 | o] Moo o 000
Hamming distances
Z —_— W - Z(YC) —_— W Activations (d s 447)
Sums
WORD-OUT REGISTER
=z(YY'W)-W

= Each time an address word would activate on the average pM
addresses. p would be determined based on bit recovery fidelity and
number of available hard locations (M).

= T (Number of saved elements in the memory) is determined based on

memory capacity (for the required bit fidelity) and hard locations.
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Ratio of Patterns to Physical Locations

0.7

0.5

0.4

Gamma

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
-~
~
-~
~
~
~
~
-~
-~
~
~
~
~
~
~
~
-~
~
~
~
~
~
~
~
~
~
~
~
~
~
~o
~

0.2

0.1 » » » s

\ \ \ \ \ \ \ \ \ !
8.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Bit Fidelity




Non-ldeal Effects on SDM Performance (1)

# of Bit Errors in 1000 Bit Data
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Non-ldeal Effects on SDM Performance (2)
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Circuit Implementation of SDM
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(1) Large # of Cells =» Large area
Issues (2) Analog DRAM =» Volatile memory
(3) Sum of 1M = Signal-to-noise ratio



Implementation of C Matrix
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3 issues

(1) Sequential access to 1M row
=>» Long latency

(2) Large SRAM area

The smallest SRAM cell = 0.081mm?
20nm CMOS (ISSCC2013)

= 20mm?

(3) Volatile memory



Circuit Implementation of SDM (2)
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Matrix Multiplication

n X n matrix (e.g. n = 4)
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Hardware for Matrix Multiplication

n X n matrix = 10000 x 10000 matrix
Each data = m-bit = 8-bit (typical image)

/Too big for SRAM

B Memor
y (1) Too many output
640M b't bits of memory
3D-stacked / (2) Too many TSV’s
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Hyperdimension and Randomness

RRAM cell

Delay cell
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Random indexing:

orthogonal transformation of

data into hyper-dimensional 1 1
space
2 0.33
3 0.11

RRAM cell

Layer 3 (RRAM)

I
Layer 2 (CNFET)

Layer 1 (CNFET) 3

3D CNFET INV
Mean Min
0.73 0.21 0.18 86%
2.23 1.36 0.94 69%
6.79 4.82 241 50%

= CNT-RRAM combines helps to spread distributions
= 3D integration enables scalability
= Extremely low energy operation

[Collaborative Project with P. Wong and S. Mitra, Stanford]
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Conclusion

The need for defect-tolerant hardware due to noisy
nanometer-scale devices is rising

Large class of the next generation of applications could be
categorized into recognition, mining and synthesis (RMS)

Deploying heterogeneous systems will become inevitable to
meet the specs (area, power, etc.)

Emulating the algorithms with FPGAs and GPUs is ongoing
before having these new devices in massive numbers



