The Path Toward Energy-Efficient Inference Engine Architectures on Scaled and Beyond-CMOS Fabrics

Ashkan Borna, Makoto Takamiya and Jan M. Rabaey October 28th 2013

Neuro-Inspired Information Processing

Why? Traditional semiconductor scaling is slowing down

- Energy, low signal-to-noise ratio and variability limit further scaling of semiconductor systems (end of "Moore's Law" ?)
- Exploit properties of neural systems
 - Massively parallel, high density, major redundancy, and adaptivity (learning)
 - Robustness through exploitation of randomness and variability
 - Multiple signal representations in single integrated environment (analog, discrete, digital)

Reduction of energy/operation slowing down

Alternative Computational Paradigms

- Functional non-determinism present in many applications
 - ✓ Feature extraction, classification, recognition, decision making, learning

Metrics

- The means to compare neuro-inspired algorithms are similar to the traditional ones. However, given the difference in representations, metrics may have to be redefined
- Important properties to be measured:
 - Performance, latency
 - Power, energy
 - Robustness
 - Density: given the 3D nature of many of the envisioned implementations, density may be a better measure than area

Dimension of Representation

- A representation is minimal if dimensionality is just sufficient to represent the full signal coverage
- A representation is *hyperdimensional* when the number of dimensions is "much" (> 1000?) larger than needed to cover the space.
 - Hyperdimensional representations are redundant, and most often sparse
 - The axis' are chosen at random

Hyperspace

Distance between nodes is a binomial distribution

Thousand bit Vectors Space with One Million Nodes

 1,000-dimensional space has 1,000 orthogonal vectors. But much more nearly orthogonal and that's why we like hyper space

Computation in Hyperdimension

- Ten patterns in the library
- Each pattern has 10000 bits
- High SNR

- Ten patterns in the library
- Each pattern has 100 bits
- Low SNR

RAM vs. Sparse Memory

SDM

RAM

"Sparse distributed memory and related models", P. Kanerva

Read and Write Operations

"Sparse distributed memory and related models", P. Kanerva

Fundamental Operations

- N is huge hence 2^N is practically infinite
- Basic Operations:

$$\mathbf{C} = \sum_{t=1}^{T} \mathbf{Y}_{t} \Box \mathbf{W}_{t} = \sum_{t=1}^{T} y(\mathbf{A}\mathbf{X}_{t}) \Box \mathbf{W}_{t}$$

$$\mathbf{Z} - \mathbf{W} = z(\mathbf{Y}\mathbf{C}) - \mathbf{W}$$

 $= z(\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\mathbf{W}) - \mathbf{W}$

- Each time an address word would activate on the average ρM addresses. ρ would be determined based on bit recovery fidelity and number of available hard locations (M).
- T (Number of saved elements in the memory) is determined based on memory capacity (for the required bit fidelity) and hard locations.

$$\Gamma \approx \frac{1}{\left[\Phi^{-1}(\varphi)\right]} \qquad T = \Gamma M \qquad \rho = \frac{1}{\sqrt[3]{2MT}}$$

Ratio of Patterns to Physical Locations

Non-Ideal Effects on SDM Performance (1)

Number of discrepancies between stored and retrieved data for a 1000 bit data vs. counter limit for Fidelity of 0.99

Non-Ideal Effects on SDM Performance (2)

Effect of cells' SNR on the error rates for different fidelities

Circuit Implementation of SDM

Implementation of C Matrix

Circuit Implementation of SDM (2)

Matrix Multiplication

Hyperdimension and Randomness

Random indexing:
orthogonal transformation of
data into hyper-dimensional
space

Die	CNT density (CNT/μm)	Delay (µs)		Standard	Std/(Mean-Min)
		Mean	Min	deviation (µs)	
1	1	0.73	0.21	0.18	86%
2	0.33	2.23	1.36	0.94	69%
3	0.11	6.79	4.82	2.41	50%

- CNT-RRAM combines helps to spread distributions
- 3D integration enables scalability
- Extremely low energy operation

[Collaborative Project with P. Wong and S. Mitra, Stanford]

Conclusion

- The need for defect-tolerant hardware due to noisy nanometer-scale devices is rising
- Large class of the next generation of applications could be categorized into recognition, mining and synthesis (RMS)
- Deploying heterogeneous systems will become inevitable to meet the specs (area, power, etc.)
- Emulating the algorithms with FPGAs and GPUs is ongoing before having these new devices in massive numbers