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8 Years Ago 

3.8 GHz 
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Today, Xistors are: 
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Dark Silicon: Transistors clocked 
far below their potential. 

4 cores  
1.8 GHz 

8 cores 
1.8 GHz  

65 nm 32 nm 

Dark or Dim 
Silicon (“uncore”) 

2x cores per 2 generations, 
flat frequency 
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Where does dark silicon come from? 
And how dark is it going to be? 

The Utilization Wall: 

With each successive process generation, the 
percentage of a chip that can switch at full 
frequency drops exponentially due to power 
constraints. 

[Venkatesh, Taylor, etc, ASPLOS ‘10] 



Dennard:   
 “We can keep power consumption  
       constant” 

S 

S2 

S3 

1 

S2 = 2x  
More Transistors 

S = 1.4x 
Faster Transistors 

S = 1.4x 
Lower Capacitance 

Scale Vdd by S=1.4x 
S2 = 2x  



Fast forward to 2005:   
 Threshold Scaling Problems due to 
Leakage Prevents Us From Scaling Voltage 
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Full Chip, Full Frequency Power Dissipation 
   Is increasing exponentially by 2x with 
   every process generation 

S 

S2 

S3 

1 

Factor of S2 

    = 2X shortage!! 



Multicore has hit the Utilization Wall 

4 cores @ 1.8 GHz 

4 cores @ 2x1.8 GHz 
(12 cores dark) 

2x4 cores @ 1.8 GHz 
(8 cores dark, 8 dim) 

(Intel/x86 Choice, 
  next slide) 

.…
 

65 nm 32 nm 

.…
 

.…
 

Spectrum of tradeoffs 
between # of cores and  
frequency 

Example: 
65 nm  32 nm (S = 2)   

[Taylor, Hotchips 2010] 

4x4 cores @ .9 GHz 
(GPUs of future?) 

[Esmaeilzadeh ISCA 2011] 



If multicore is not a solution to the 
dark silicon problem, what other 
potential avenues do we have? 

 Develop a more nuanced 
understanding of dark silicon. 



This Talk 

Explaining the Source of Dark Silicon 

The Four Horsemen of the Dark Silicon Apocalypse 

GreenDroid: An Architecture for the Dark Silicon Age 

[Taylor, DAC 2012]  



The Four Horsemen Taxonomy 

I II III IV 

Approaches for thriving in a future of dark silicon 

A taxonomy of approaches for dealing with dark silicon. 
None is ideal, but each has its benefit and the optimal chip 
design probably incorporates all four… 



The Shrinking Horseman (#1) 

“Area is expensive. Chip designers will  
just build smaller chips instead of having 
dark silicon in their designs!” 

 90 

8 nm 

(if you work on Dark Silicon research, you will 
hear this a lot…) 



“Area is expensive. Chip designers will  
just build smaller chips instead of having 
dark silicon in their designs!” 

 90 

8 nm 

First, dark silicon doesn’t mean useless silicon, 
it just means it’s under-clocked or not used all of the time. 

There’s lots of dark silicon in current chips: 
•  e.g. L3 cache cells are very dark 
•  un-core, unused SSE, etc. 

The Shrinking Horseman (#1) 



The Shrinking Horseman (#1) 

 90 

8 nm 

“Why not just build smaller chips!” 

Possibly – but why didn’t we shrink all of our chips 
before the dark silicon days? This too would be cheaper! 

•   Exponential increase in Power Density   
       Exponential Rise in Temperature [Skadron] 
•  Competition and Margins 

•  If dark silicon buys you anything,  
  you have to use it too, to keep up with the Jones. 

• Diminished Returns 
•  Fixed % of chip cost is in the silicon;  
  (versus marketing, test, packaging, I/O pad area, etc);  
 savings decrease exponentially w/ scaling.  

• But, some chips will shrink 
•  Especially chips where improved perform. does not matter  
•  Race to the bottom; except if we can sell exponentially more chips! 



The Four Horsemen Taxonomy 

I II III IV 

Explaining the Source of Dark Silicon 

The Four Horsemen of the Dark Silicon Apocalypse 



The Dim Horseman (#2) 
 90 

8 

“We will fill the chip with  
homogeneous cores that would  
exceed the power budget 
but we will: 
   - underclock them (spatial dimming) 
   - use in bursts (temporal dimming) 

 …  “dim silicon”. 



The Dim Horseman (#2) 
 90 

8 

Spatial Dimming 
 Multicores (higher core count   lower freqs) 
     “Upward DVFS” – Cubic Power Increase 
     Downward DVFS no longer decreases power cubically 
 Near Threshold Voltage (NTV) Operation 

•  Bad: Delay Increase >> Energy Gain 
  e.g 5X more energy, 8X slower 
   also, requires redesign of circuits for NTV operation! 
•  Good: Energy per op is still lower 
•  8X more cores / parallelism   1X perf, 5X lower energy 
•  40X more cores / parallelism  5X perf, same energy 
•  But watch for Non-Ideal Speedups / Amdahl’s Law 

NTV Examples: 
•  Manycore (e.g., UMich Centip3de [ISSCC 2012]) 
•  SIMD (e.g., Synctium [CAL 2010]] 
•  x86 [Intel, ISSCC 2012] 



The Dim Horseman (#2) 

wall 
clock 
time 

Temporal Dimming: Computing in Bursts 
    - Battery Limited Systems 

 Active versus Standby mode 
   - Thermally Limited Systems 

 Turbo Boost 2.0 [ Intel, Rotem et al., HOTCHIPS 2011] 
•  Leverage Thermal Cap for DVFS – “overspend” if cold 

 Computational Sprinting, [Raghavan HPCA 2012] 
 ARM big.LITTLE in mobile phones or tablets [DAC 2012] 

•   A15 power usage way above sustainable for phone   10 second bursts at most 



The Four Horsemen 

I II III IV 

Explaining the Source of Dark Silicon 

The Four Horsemen of the Dark Silicon Apocalypse 



The Specialized Horseman (#3) 
 90 

8 

“We will use all of that dark silicon 
area to build specialized 
cores, each of them tuned for 
the task at hand (10-100x more  
energy efficient), and only turn 
on the ones we need…” 

[e.g., Venkatesh et al., ASPLOS 2010, 
         Lyons et al., CAL  2010,  
         Goulding et al., Hotchips 2010, 
         Hardavellas et al. IEEE Micro 2011] 
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The Four Horsemen of the Dark Silicon Apocalypse 

GreenDroid: An Architecture for the Dark Silicon Age 



29 

Conservation Cores 

  Idea: Leverage dark silicon to “fight” the utilization wall 

  Insights: 
–  Specialized logic can improve energy efficiency 
     by 10-1000x versus a general-purpose processor 
–  Power is now more expensive than area 

  Our Approach: 
–  Fill dark silicon with Conservation Cores, or c-cores, 
    which are specialized energy-saving coprocessors that save 

energy on common apps 
–  Execution jumps from c-core to c-core 
–  Power-gate c-cores that are not currently in use 

  Conservation Cores provide an architectural way to trade 
dark area for an effective increase in power budget! 

Dark Silicon 



Conservation Cores (C-cores) 
  Specialized coprocessors for 
reducing energy in irregular code 
–  Hot code implemented by c-cores,  
   cold code runs on host CPU; 
–  C-cores use up to 18x less energy 
–  Shared D-cache  Coherent Memory 
–  Patching support in hardware 

  Fully-automated toolchain 
–  No “deep” analysis or 

transformations required 
–  C-cores automatically generated from 

hot program regions 
–  Design-time scalable 

•  Emphasize Quantity over Quality! 
•  Simple conversion into HW buys us big 

gains, no need for heroic compiler efforts. 

D-cache 

Host 
CPU 

(general-purpose 
processor) 

I-cache 

Hot code 

Cold code 

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al., 
ASPLOS '10 

C-core 



C-core 
Generation 

for (i=0; i<N; i++) {
  x = A[i];
  y = B[i];
  C[x] = D[y] + x+y+x*y;
}

Start with ordinary C code. Irregular 
or regular is fine. Arbitrary control flow, 
arbitrary memory access patterns and 
complex data structures are supported. 



BB1 

BB0 

BB2 

CFG 

C-core 
Generation 

Build a CFG; run ordinary 
compiler optimizations. 
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ST + 

Datapath 

C-core 
Generation 

Each BB becomes a  
datapath; each 
operator turned into 
HW equivalent. 

Memory ops mux’d 
into L1 cache. 

Multiplier and FPUs 
may or may not be 
shared. 
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Inter-BB 
State Machine 

C-core 
Generation 

Create a state machine  
that determines which BB 
(datapath) is next. 
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CFG 
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LD 
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Datapath 

Inter-BB 
State Machine 

0.01 mm2 in 45 nm TSMC 
runs at 1.4 GHz 

.V 

Synopsys 
IC Compiler, 
P&R, CTS 

C-core 
Generation 

.V 

Via verilog, run 
through standard 

CAD flow. 



D-cache 
6% Datapath 

3% 

Energy 
Saved 
91% 

D-cache 
6% 

Datapath 
38% 

Reg. File 
14% 

Fetch/ 
Decode 

19% 

I-cache 
23% 

Where do the energy savings 
come from? 

RISC baseline 
91 pJ/instr. 

C-cores 
8 pJ/instr. 



Supporting Software Changes 

  Software may change – HW must remain usable 
–  C-cores unaffected by changes to cold regions 

  Can support any changes, through patching 
–  Arbitrary insertion of code – software exception 

mechanism 
–  Changes to program constants – configurable registers 
–  Changes to operators – configurable functional units 

  Software exception mechanism 
–  State-tree allows us to access any register in the C-core 
–  Execute replacement code in processor 
–  Write back values to c-core state-tree to resume execution 



Android Time Highly Concentrated 
61% of user time is spent in web + top 10 apps. 
67% of user time is spent in web + top 20 apps. 
73% of user time is spent in web + top 50 apps 

 growing at 2% for each additional 10 apps.  



GreenDroid: Using c-cores to reduce energy 
in mobile application processors 

Android 
workload 

Automatic 
c-core 
generator 

C-cores 
Placed-and-routed chip 
with 9 Android c-cores 

"The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future," 
Goulding-Hotta et al., IEEE Micro Mar./Apr. 2011 

generator 

cores 



GreenDroid Tile Floorplan 

  Norm to 45 nm: 
–  1.0 mm2 per tile 
–  1.5 GHz 

  25% RISC core,  
I-cache, and  
on-chip network 
  25% D-cache 
  50% C-core “fill” 

1 mm 
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Quad-core GreenDroid Prototype 

  Four heterogeneous tiles with 
~40 C-cores. 
  Synopsys IC Compiler 
  28-nm Global Foundries 
  ~1.5 GHz 
  2 mm^2 
  Multiproject Tapeout w/ UCSC 
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ASPLOS ‘10 

C-cores; 
Patching; 
Util. Wall 

HOTCHIPS ‘10 

GreenDroid; 
Dark Silicon 

Selective  
 Depipelining; 
Cachelets 

 + 

HPCA ’11 

C-cores for 
FPGAs 

FPL ’11 

Selective 
  Depipelining for 
    FPGAs 

 + 

IEEE MICRO ‘11 

GreenDroid 
P&R Tile 

FCCM ’11 
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The Four Horsemen 

I II III IV 

Explaining the Source of Dark Silicon 

The Four Horsemen of the Dark Silicon Apocalypse 



The Deus Ex Machina Horseman 
Latin           [/dayus ex makeena/] 
American    [/duece ex mashina/] 

deux ex machina /dayus ex makeena/  
A plot device whereby a seemingly�
unsolvable problem is suddenly and �
abruptly solved with the unexpected�
intervention of some new event, 
character, ability or object.�



The Deus Ex Machina Horseman 
“MOSFETs are the fundamental problem.” 

MOSFET variants  
( FinFets, Trigate, High-K, nanotubes, 3D)   

 - one-time improvements 
 - limited to 60 mV/decade subthreshold slope 
 - leakage is still there 



The Deus Ex Machina Horseman 

[e.g, Spencer et al JSSC 2011] 

Possible “Beyond CMOS” Device Directions 
 (none are there yet, imho) 

•  Nano-electrical Mechanical  
    (NEMS) Relays 
   very low energy, physical 
    connections, very slow  
•  Tunnel Field Effect Transistors (TFETs) 

 use tunneling effects to overcome MOSFET limits 
better subthreshold slopes (~ 25 mV/decade) at lower 
voltages; not superior to MOSFETS at higher voltages 

[e.g., Ionescu et al, Nature 2011] 



DARPA / SRC / MARCO’s
$194M Starnet Investment 

I II III IV 

C-FAR 
LEAST 
C-SPIN 
FAME 
SONIC 

Default 

Terraswarm 



For more : 
  IEEE Micro 2013 Paper 

Explaining the Source of Dark Silicon 

The Four Horsemen of the Dark Silicon Apocalypse 

Dark Silicon Design Principles 

A Truly Dark Computing Fabric: The Brain 



Conclusion 
  Dark Silicon is opening up a whole new class of 
exciting new architectural directions which many 
folks are starting to move into – which I have 
termed the “four horsemen”. 
  GreenDroid is one interesting example of an 
architecture that explores one of these 
directions. 

I II III IV 



The UCSD GreenDroid Team 

darksilicon.org 

Prof. Taylor Prof. Swanson 


