
The Exascale Challenge:
How Technology Disruptions Fundamentally Change Programming Systems

John Shalf
Department Head: Computer Science and Data Sciences (CSDS)

CTO: National Energy Research Scientific Computing Center (NERSC)

E3S Workshop, October 28, 2013

High End Modeling and Data Assimilation

For Advanced Combustion Research

Advanced “capability-class” solvers Access to leading edge computational resources

Approach: Combine unique codes and resources to maximize benefits of

high performance computing for turbulent combustion research

DNS to investigate

combustion phenomena

at smallest scales

 no modeling

 limited applicability

LES to investigate

coupling over full

range of scales in

experiments

 minimal modeling

 full geometries

CRF Computational

Combustion and

Chemistry Laboratory

Combustion Research

and Computational

Visualization Facility

DOE Office of Science

Laboratories

 LBNL NERSC

 ORNL OLCF

 ANL ALCF

INCITE Program

Image courtesy of Oak Ridge National Laboratory

Joint OS-EERE Funding

Ofelein, Chen: Sandia 2009

Scientific Breakthroughs Enabled by

Algorithms, Applications, and HPC Capability

Mechanism Reduction

Detailed Device

Models

• e.g. Gas Turbines,

IC Engines, Liquid

Rockets

Kinetic Experiments

Mechanism Development

Device Validation Experiments

Sub-Model Validation Experiments

Chemical Dynamics

Theory

Turbulent Flame Experiments

Mechanistic Experiments

Combustion Research has demonstrated a

long history of scientific breakthroughs

resulting from joint advances in Algorithms,

Applications, and HPC Capability

Need for more simulation fidelity

drives insatiable need for larger

scale systems.

Two Decades of Exponential Performance

Improvements

Source: TOP500 November 2012

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

59.7 GFlop/s

400 MFlop/s

1.17

TFlop/s

17.6

PFlop/s

76.5 TFlop/s

162 PFlop/s

SUM

N=1

N=500

 1 Gflop/s

 1 Tflop/s

 100 Mflop/s

100 Gflop/s

100 Tflop/s

 10 Gflop/s

 10 Tflop/s

 1 Pflop/s

100 Pflop/s

 10 Pflop/s

1 Eflop/s

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020

Year of Introduction

Computing Crisis is Not Just about Exascale

 Expectation Gap

Microprocessor Performance “Expectation Gap (1985-2020 projected)

Industry motivated, path forward is unclear

Technology Challenges for the Next Decade

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 6

! "

! #"

! ##"

! ###"

! ####"

$%
"&'
(%
"

) *
+,-
.*
/"

! 0
0
"1
23
45
,6
"

70
0
"1
23
45
,6
"

(8
34
5,
69
$)
: ;

"
<1
4=
<",2
.*
/4
12
2*
4.
"

>/
1-
-"-
?-
.*
0
"

21@"

A#! B"

Internode/MPI	
Communica on	

On-chip		/	CMP	
communica on	

Intranode/SMP	
Communica on	

P
ic
o
jo
u
le
s	
P
er
	O
p
er
a

o
n
	

Parallelism is

growing at

exponential rate

Power is leading

constraint for future

performance growth

By 2018, cost of a FLOP will be

less than cost of moving 5mm

across the chip’s surface (locality

will really matter)

Reliability going down for

large-scale systems, but

also to get more energy

efficiency for small systems

Memory Technology

improvements are

slowing down

Whats wrong with current HPC Systes?
Designed for Constraints from 30 years ago! (wrong target!!)

Old Constraints

• Peak clock frequency as primary

limiter for performance improvement

• Cost: FLOPs are biggest cost for

system: optimize for compute

• Concurrency: Modest growth of

parallelism by adding nodes

• Memory scaling: maintain byte per

flop capacity and bandwidth

• Locality: MPI+X model (uniform

costs within node & between nodes)

• Uniformity: Assume uniform

system performance

• Reliability: It’s the hardware’s

problem

New Constraints

• Power is primary design constraint for

future HPC system design

• Cost: Data movement dominates:

optimize to minimize data movement

• Concurrency: Exponential growth of

parallelism within chips

• Memory Scaling: Compute growing

2x faster than capacity or bandwidth

• Locality: must reason about data

locality and possibly topology

• Heterogeneity: Architectural and

performance non-uniformity increase

• Reliability: Cannot count on

hardware protection alone

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 7 1/23/2013

Fundamentally breaks our current programming paradigm and computing ecosystem

! "

! #"

! ##"

! ###"

! ####"

$%
"&'
(%
"

) *
+,-
.*
/"

! 0
0
"1
23
45
,6
"

70
0
"1
23
45
,6
"

(8
34
5,
69
$)
: ;

"
<1
4=
<",2
.*
/4
12
2*
4.
"

>/
1-
-"-
?-
.*
0
"

21@"

A#! B"

Internode/MPI	
Communica on	

On-chip		/	CMP	
communica on	

Intranode/SMP	
Communica on	

P
ic
o
jo
u
le
s	
P
er
	O
p
er
a

o
n
	

Programming Models are a Reflection of the Underlying
Machine Architecture
• Express what is important for performance

• Hide complexity that is not consequential to performance

Programming Models are Increasingly Mismatched with
Underlying Hardware Architecture
• Changes in computer architecture trends/costs

• Performance and programmability consequences

Technology changes have deep and pervasive effect on
ALL of our software systems (and how we program them)
• Change in costs for underlying system affect what we expose

• What to virtualize

• What to make more expressive/visible

• What to ignore

The Programming Systems Challenge

The Programming Model is a Reflection of

the Underlying Abstract Machine Model

Equal cost SMP/PRAM model

• No notion of non-local access

• int [nx][ny][nz];

Cluster: Distributed memory model

• No unified memory

• int [localNX][localNY][localNZ];

PGAS for horizontal locality

• Data is LOCAL or REMOTE

• shared [Horizontal] int [nx][ny][nz];

Whats Next?

9

SMP

P P P P P

P P P P P

MPI Distributed Memory

local

P P P P P

shared
PGAS

Parameterized Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many

•Heterogeneous

•SIMD Width

Network on Chip (NoC)
•Are they equidistant or

•Constrained Topology (2D)

On-Chip Memory Hierarchy
•Automatic or Scratchpad?

•Memory coherency method?

Node Topology
•NUMA or Flat?

•Topology may be important

•Or perhaps just distance

Memory
•Nonvolatile / multi-tiered?

•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults

• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead

•Topology

Primitives for data

movement/sync
•Global Address Space or

messaging?

•Synchronization

primitives/Fences

For each parameterized machine attribute, can

• Ignore it: If ignoring it has no serious power/performance consequences

• Expose it (unvirtualize): If there is not a clear automated way of make decisions

• Must involve the human/programmer in the process (make pmodel more expressive)

• Directives to control data movement or layout (for example)

• Abstract it (virtualize): If it is well enough understood to support an automated mechanism

to optimize layout or schedule

• This makes programmers life easier (one less thing to worry about)

Want model to be as simple as possible, but not neglect any aspects of

the machine that are important for performance

Abstract Machine Model
(what do we need to reason about when designing a new code?)

• Cost to move a bit on copper wire:

• energy = bitrate * Length2 / cross-section area

• Wire data capacity constant as feature size shrinks

• Cost to move bit proportional to distance

• ~1TByte/sec max feasible off-chip BW (10GHz/pin)

• Photonics reduces distance-dependence of bandwidth

The Problem with Wires:

Energy to move data proportional to distance

Copper requires to signal amplification

even for on-chip connections

Photonics requires no redrive

and passive switch little power

Cost of Data Movement Increasing Relative to Ops

1	

10	

100	

1000	

10000	

DP
	FL
OP
	

Re
gi
st
er
	

1m
m
	o
n-
ch
ip
	

5m
m
	o
n-
ch
ip
	

Of
f-c
hi
p/
DR
AM

	

lo
ca
l	i
nt
er
co
nn
ec
t	

Cr
os
s	s
ys
te
m
	

P
ic
o
Jo
u
le
s	

now	

2018	

FLOPs will cost less

than on-chip data

movement! (NUMA)

p
ic

o
 j
o

u
le

s
 /
 b

it

The Logical Conclusion

If FLOPS are free, then why do we need an “exaflops”

initiative?

“Exaflops”

“Exascale”

“Exa”-anything has become a bad brand

• Associated with buying big machines for the labs

• Associated with “old” HPC

• Sets up the community for “failure”, if “goal” can’t

be met

Data Locality Management

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

15

0

2

4

6

8

10

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

768 384 256 128 64

M
e

m
o

ry
 /

 G
B

 p
e

r
n

o
d

e

T
im

e
 /

 s

OpenMP threads / MPI tasks

"DGEMM" FFT

G

O

O
D

Requires user

training to

mitigate NUMA
performance

issues.

Current Practices (2-level Parallelism)
NUMA Effects Ignored (with huge consequence)

MPI+OMP Hybrid
• Reduces memory footprint

• Increases performance up to NUMA-node limit

• Then programmer responsible for matching up computation with data

layout!! (UGH!)

• Makes library writing difficult and Makes AMR nearly impossible!

It’s the Revenge

of the SGI

Origin2000

Bad News!

Expressing Hierarchical Layout

Old Model (OpenMP)
• Describe how to parallelize loop iterations

• Parallel “DO” divides loop iterations evenly among
processors

• (but where is the data located?

New Model (Data-Centric
• Describe how data is laid out in memory

• Loop statements operate on data where it is located

• Similar to MapReduce, but need more sophisticated
descriptions of data layout for scientific codes

upc_forall(i=0;i<NX;i++;A)

 C[j]+=A[j]*B[i][j]);

17

Data-Centric Programming Model
(current compute-centric models are mismatched with emerging hardware)

Building up a hierarchical layout

• Layout block coreblk {blockx,blocky};

• Layout block nodeblk {nnx,nny,nnz};

• Layout hierarchy myheirarchy {coreblk,nodeblk};

• Shared myhierarchy double a[nx][ny][nz];

18

• Then use data-localized parallel loop

 doall_at(i=0;i<nx;i++;a){

 doall_at(j=0;j<ny;j++;a){

 doall_at(k=0;k<nz;k++;a){

 a[i][j][k]=C*a[i+1]…>

• And if layout changes, this loop remains the

same

Satisfies the request of the application developers

(minimize the amount of code that changes)

Heterogeneity / Inhomogeneity

Async Programming Models?

Assumptions of Uniformity is Breaking

(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU
computing)

• Fine grained power mgmt. makes homogeneous
cores look heterogeneous
– thermal throttling – no longer guarantee

deterministic clock rate

• Nonuniformities in process technology creates
non-uniform operating characteristics for cores on
a CMP
– Near Threshold Voltage (NTV)

• Fault resilience introduces inhomogeneity in
execution rates

– error correction is not instantaneous
– And this will get WAY worse if we move towards software-

based resilience

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 20

Bulk Synchronous Execution

Assumptions of Uniformity is Breaking

(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU
computing)

• Fine grained power mgmt. makes homogeneous
cores look heterogeneous
– thermal throttling – no longer guarantee

deterministic clock rate

• Nonuniformities in process technology creates
non-uniform operating characteristics for cores on
a CMP
– Near Threshold Voltage (NTV)

• Fault resilience introduces inhomogeneity in
execution rates

– error correction is not instantaneous
– And this will get WAY worse if we move towards software-

based resilience

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 21

Bulk Synchronous Execution

Assumptions of Uniformity is Breaking

(many new sources of heterogeneity)

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

Bulk Synchronous Execution Asynchronous Execution Model

Sources of performance heterogeneity increasing

• Heterogeneous architectures (accelerator)

• Thermal throttling

• Performance heterogeneity due to transient error recovery

Current Bulk Synchronous Model not up to task

• Current focus is on removing sources of performance variation

(jitter), is increasingly impractical

• Huge costs in power/complexity/performance to extend the life

of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of asynchronous computational

models (e.g. SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity

Emerging hardware constraints are increasingly mismatched with

our current programming paradigm

• Current emphasis is on preserving FLOPs

• The real costs now are not FLOPs… it is data movement

• Requires shift to a data-locality centric programming paradigm and hardware features

to support it

Technology Changes Fundamentally Disrupt our Programming

Environemnt

• The programming environment and associated “abstract machine model” is a

reflection of the underlying machine architecture

• Therefore, design decisions can have deep effect your entire programming

paradigm

• Hardware/Software Codesign MUST consider ergonomic decisions about

your programming environment together with performance

Performance Portability Should be Top-Tier Metric for CoDesign

process

• Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE

Conclusions

