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High End Modeling and Data Assimilation 

For Advanced Combustion Research 

Advanced “capability-class” solvers Access to leading edge computational resources 

Approach: Combine unique codes and resources to maximize benefits of 

high performance computing for turbulent combustion research 

DNS to investigate 

combustion phenomena 

at smallest scales 

   no modeling 

   limited applicability 

LES to investigate 

coupling over full 

range of scales in 

experiments  

     minimal modeling 

     full geometries 

CRF Computational 

Combustion and 

Chemistry Laboratory 

Combustion Research 

and Computational 

Visualization Facility 

DOE Office of Science 

Laboratories 

     LBNL NERSC 

     ORNL OLCF 

     ANL    ALCF 

INCITE Program 

Image courtesy of Oak Ridge National Laboratory 

Joint OS-EERE Funding 

Ofelein, Chen: Sandia 2009 



Scientific Breakthroughs Enabled by 

Algorithms, Applications, and HPC Capability 

Mechanism Reduction 

Detailed Device 

Models 

• e.g. Gas Turbines, 

IC Engines, Liquid 

Rockets 

Kinetic Experiments 

Mechanism Development 

Device Validation Experiments 

Sub-Model Validation Experiments 

Chemical Dynamics  

Theory 

Turbulent Flame Experiments 

Mechanistic Experiments 

Combustion Research has demonstrated a 

long history of scientific breakthroughs 

resulting from joint advances in Algorithms, 

Applications, and HPC Capability 

 

Need for more simulation fidelity 

drives insatiable need for larger 

scale systems. 

 



Two Decades of Exponential Performance 

Improvements 

Source: TOP500 November 2012 
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Computing Crisis is Not Just about Exascale 

 Expectation Gap 

Microprocessor Performance “Expectation Gap (1985-2020 projected) 

Industry motivated, path forward is unclear 



Technology Challenges for the Next Decade 
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Parallelism is 

growing at 

exponential rate 

Power is leading 

constraint for future 

performance growth 

By 2018, cost of a FLOP will be 

less than cost of moving 5mm 

across the chip’s surface (locality 

will really matter) 

Reliability going down for 

large-scale systems, but 

also to get more energy 

efficiency for small systems 

Memory Technology 

improvements are 

slowing down 



Whats wrong with current HPC Systes? 
Designed for Constraints from 30 years ago! (wrong target!!) 

Old Constraints 

• Peak clock frequency as primary 

limiter for performance improvement 

• Cost: FLOPs are biggest cost for 

system: optimize for compute 

• Concurrency: Modest growth of 

parallelism by adding nodes 

• Memory scaling: maintain byte per 

flop capacity and bandwidth 

• Locality: MPI+X model (uniform 

costs within node & between nodes) 

• Uniformity:  Assume uniform 

system performance 

• Reliability: It’s the hardware’s 

problem 

 

 

New Constraints 

• Power is primary design constraint for 

future HPC system design 

• Cost: Data movement dominates: 

optimize to minimize data movement 

• Concurrency: Exponential growth of 

parallelism within chips 

• Memory Scaling: Compute growing 

2x faster than capacity or bandwidth 

• Locality: must reason about data 

locality and possibly topology 

• Heterogeneity: Architectural and 

performance non-uniformity increase 

• Reliability: Cannot count on 

hardware protection alone 
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Fundamentally breaks our current programming paradigm and computing ecosystem 
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Programming Models are a Reflection of the Underlying 
Machine Architecture 
• Express what is important for performance 

• Hide complexity that is not consequential to performance 

Programming Models are Increasingly Mismatched with 
Underlying Hardware Architecture 
• Changes in computer architecture trends/costs 

• Performance and programmability consequences 

Technology changes have deep and pervasive effect on 
ALL of our software systems (and how we program them) 
• Change in costs for underlying system affect what we expose 

• What to virtualize 

• What to make more expressive/visible 

• What to ignore 

The Programming Systems Challenge 



The Programming Model is a Reflection of 

the Underlying Abstract Machine Model 

Equal cost SMP/PRAM model 

• No notion of non-local access 

• int [nx][ny][nz]; 

 

Cluster: Distributed memory model 

• No unified memory 

• int [localNX][localNY][localNZ]; 

 

PGAS for horizontal locality 

• Data is LOCAL or REMOTE 

• shared [Horizontal] int [nx][ny][nz]; 

 

Whats Next? 
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SMP 

P P P P P 

P P P P P 

MPI Distributed Memory 

local 

P P P P P 

shared 
PGAS 



Parameterized Machine Model 
(what do we need to reason about when designing a new code?) 

Cores 
•How Many 

•Heterogeneous 

•SIMD Width 

Network on Chip (NoC) 
•Are they equidistant or  

•Constrained Topology (2D) 

On-Chip Memory Hierarchy 
•Automatic or Scratchpad? 

•Memory coherency method? 

Node Topology 
•NUMA or Flat? 

•Topology may be important 

•Or perhaps just distance 

Memory 
•Nonvolatile / multi-tiered? 

•Intelligence in memory (or not) 

Fault Model for Node 
• FIT rates, Kinds of faults 

• Granularity of faults/recovery 

 

Interconnect 
•Bandwidth/Latency/Overhead 

•Topology 

Primitives for data 

movement/sync 
•Global Address Space or 

messaging? 

•Synchronization 

primitives/Fences 



For each parameterized machine attribute, can  

• Ignore it: If ignoring it has no serious power/performance consequences 

• Expose it (unvirtualize): If there is not a clear automated way of make decisions 

• Must involve the human/programmer in the process (make pmodel more expressive) 

• Directives to control data movement or layout (for example) 

• Abstract it (virtualize): If it is well enough understood to support an automated mechanism 

to optimize layout or schedule 

• This makes programmers life easier (one less thing to worry about) 

Want model to be as simple as possible, but not neglect any aspects of 

the machine that are important for performance 

 

Abstract Machine Model  
(what do we need to reason about when designing a new code?) 



• Cost to move a bit on copper wire: 

• energy = bitrate * Length2 / cross-section area 

 

 

 

• Wire data capacity constant as feature size shrinks 

• Cost to move bit proportional to distance 

• ~1TByte/sec max feasible off-chip BW (10GHz/pin) 

• Photonics reduces distance-dependence of bandwidth 

 

The Problem with Wires:  

Energy to move data proportional to distance 

Copper requires to signal amplification 

even for on-chip connections  

Photonics requires no redrive 

and passive switch little power 



Cost of Data Movement Increasing Relative to Ops 
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The Logical Conclusion 

If FLOPS are free, then why do we need an “exaflops” 

initiative? 

“Exaflops” 

“Exascale” 

“Exa”-anything has become a bad brand  

• Associated with buying big machines for the labs 

• Associated with “old” HPC 

• Sets up the community for “failure”, if “goal” can’t 

be met 



Data Locality Management 

Vertical Locality Management 
(spatio-temporal optimization) 

Horizontal Locality Management 
(topology optimization) 

15 



0 

2 

4 

6 

8 

10 

12 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

1 2 3 6 12 

768 384 256 128 64 

M
e

m
o

ry
 /

 G
B

 p
e

r 
n

o
d

e
 

T
im

e
 /

 s
 

OpenMP threads / MPI tasks 

"DGEMM" FFT 

G 

O 

O 
D 

Requires user 

training to 

mitigate NUMA 
performance 

issues. 

Current Practices (2-level Parallelism) 
NUMA Effects Ignored (with huge consequence) 

MPI+OMP Hybrid  
• Reduces memory footprint 

• Increases performance up to NUMA-node limit 

• Then programmer responsible for matching up computation with data 

layout!! (UGH!) 

• Makes library writing difficult and Makes AMR nearly impossible! 

It’s the Revenge 

of the SGI 

Origin2000 

Bad News! 



Expressing Hierarchical Layout 

Old Model (OpenMP) 
• Describe how to parallelize loop iterations 

• Parallel “DO” divides loop iterations evenly among 
processors 

• (but where is the data located?  

 

New Model (Data-Centric 
• Describe how data is laid out in memory 

• Loop statements operate on data where it is located 

• Similar to MapReduce, but need more sophisticated 
descriptions of data layout for scientific codes 

 

upc_forall(i=0;i<NX;i++;A)  

 C[j]+=A[j]*B[i][j]); 
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Data-Centric Programming Model 
(current compute-centric models are mismatched with emerging hardware) 

Building up a hierarchical layout 

• Layout block coreblk {blockx,blocky}; 

• Layout block nodeblk {nnx,nny,nnz}; 

• Layout hierarchy myheirarchy {coreblk,nodeblk}; 

• Shared myhierarchy double a[nx][ny][nz]; 
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• Then use data-localized parallel loop 

    doall_at(i=0;i<nx;i++;a){ 

  doall_at(j=0;j<ny;j++;a){ 

    doall_at(k=0;k<nz;k++;a){ 

  a[i][j][k]=C*a[i+1]…> 

• And if layout changes, this loop remains the 

same 

Satisfies the request of the application developers 

(minimize the amount of code that changes) 



Heterogeneity / Inhomogeneity 

Async Programming Models? 



Assumptions of Uniformity is Breaking 

(many new sources of heterogeneity) 

• Heterogeneous compute engines (hybrid/GPU 
computing) 

• Fine grained power mgmt. makes homogeneous 
cores look heterogeneous 
– thermal throttling – no longer guarantee 

deterministic clock rate 

• Nonuniformities in process technology creates 
non-uniform operating characteristics for cores on 
a CMP 
– Near Threshold Voltage (NTV) 

• Fault resilience introduces inhomogeneity in 
execution rates 

– error correction is not instantaneous 
– And this will get WAY worse if we move towards software-

based resilience 
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Bulk Synchronous Execution 



Assumptions of Uniformity is Breaking 

(many new sources of heterogeneity) 

• Heterogeneous compute engines (hybrid/GPU 
computing) 

• Fine grained power mgmt. makes homogeneous 
cores look heterogeneous 
– thermal throttling – no longer guarantee 

deterministic clock rate 

• Nonuniformities in process technology creates 
non-uniform operating characteristics for cores on 
a CMP 
– Near Threshold Voltage (NTV) 

• Fault resilience introduces inhomogeneity in 
execution rates 

– error correction is not instantaneous 
– And this will get WAY worse if we move towards software-

based resilience 
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Bulk Synchronous Execution 



Assumptions of Uniformity is Breaking 

(many new sources of heterogeneity) 

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 

Bulk Synchronous Execution Asynchronous Execution Model 



Sources of performance heterogeneity increasing 

• Heterogeneous architectures (accelerator) 

• Thermal throttling 

• Performance heterogeneity due to transient error recovery 

 

Current Bulk Synchronous Model not up to task 

• Current focus is on removing sources of performance variation 

(jitter), is increasingly impractical 

• Huge costs in power/complexity/performance to extend the life 

of a purely bulk synchronous model 

 

Embrace performance heterogeneity:  Study use of asynchronous computational 

models (e.g. SWARM, HPX, and other concepts from 1980s) 

Conclusions on Heterogeneity 



Emerging hardware constraints are increasingly mismatched with 

our current programming paradigm 

• Current emphasis is on preserving FLOPs 

• The real costs now are not FLOPs… it is data movement 

• Requires shift to a data-locality centric programming paradigm and hardware features 

to support it 

Technology Changes Fundamentally Disrupt our Programming 

Environemnt 

• The programming environment and associated “abstract machine model” is a 

reflection of the underlying machine architecture  

• Therefore, design decisions can have deep effect your entire programming 

paradigm 

• Hardware/Software Codesign MUST consider ergonomic decisions about 

your programming environment together with performance 

Performance Portability Should be Top-Tier Metric for CoDesign 

process 

• Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE 

Conclusions 


